Nest (protein structural motif)

Last updated

The Nest is a type of protein structural motif. It is a small recurring anion-binding feature of both proteins and peptides. [1] [2] [3] [4] [5] [6] [7] [8] [9] Each consists of the main chain atoms of three consecutive amino acid residues. The main chain NH groups bind the anions while the side chain atoms are often not involved. Proline residues lack NH groups so are rare in nests. About one in 12 of amino acid residues in proteins, on average, belongs to a nest.

Contents

RL nest bound to an egg oxygen. carbons grey, oxygens red and nitrogens blue. Hydrogen atoms omitted. Hydrogen bonds are grey dotted lines. RL nest bound to an egg oxygen atom.pdf
RL nest bound to an egg oxygen. carbons grey, oxygens red and nitrogens blue. Hydrogen atoms omitted. Hydrogen bonds are grey dotted lines.

Nest conformations

The conformation of a nest is such that the NH groups of the first and third amino acid residues are liable to be hydrogen bonded to a negatively charged, or partially negatively charged, atom, often an oxygen atom. The NH of the second residue may also be hydrogen bonded to the same atom but usually points somewhat away. These main chain atoms form a concavity called a nest into which an anionic atom fits. Such anionic atoms are sometimes called eggs and more than one egg may occur bound to a nest. The oxyanion hole of the intestinal serine proteases is a functional example of a nest. Another occurs at the bottom of a deep cavity in the antibiotic peptide vancomycin which binds a key carboxylate group utilized during the final stages of bacterial cell wall synthesis, thereby preventing bacterial cells from multiplying.

Nests are defined by the conformation of the main chain atoms, namely the phi, psi dihedral angles of the first two amino acids in the nest. For a typical (RL) nest phii=-90°; psii=0°; phii+1=80°; psii+1=20°.

Nests vary in their degree of concavity. A few have so little that the concavity is lost; these peptides often bind cations via their main chain CO groups, instead of anions via their NH groups. The specificity filter of the potassium channel [10] and the water channel of aquaporin exhibit this more linear conformation in which carbonyl groups are employed by proteins to transport molecules across membranes. This near-linear conformation is also that found in a strand of alpha sheet [11] [12] [13]

Compound nests

If two nests overlap such that residue i+1 of the first nest is residue i of the second nest, a compound nest is formed. This has four NH groups instead of three. If three nests overlap such that residues i+1 and i+2 of the first nest are residue i of the second and third nest, a wider compound nest is formed with five NH groups, and so on. The main chain atoms form part of an incomplete ring with the NH groups all pointing roughly towards the centre of the ring. Because their concavities are often wider than simple nests, compound nests are commonly employed by proteins for binding multi-atom anions such as phosphates, as in the P-loop or Walker motifs, and in iron-sulphur clusters. The synthesized peptide Ser-Gly-Ala-Gly-Lys-Thr, designed as a minimal peptide P-loop, was shown to bind inorganic phosphate strongly at neutral pH [14] .

Types of nest

Simple nests are of two kinds called RL and LR depending on the sign of the phi angles of the first two nest residues. R residues have negative phi values (as in right-handed alpha-helices) and L residues have positive phi values (as in the left-handed alpha helix). Eighty percent of nests are RL and 20% are LR. When two nests overlap they may be RLR or LRL. When three nests overlap they may be RLRL or LRLR, and so on.

Every Schellman loop incorporates an RL nest in the last three of its six residues. The nest binds carbonyl oxygen atoms preceding it in sequence.

A number of antibody proteins have RLR nests within the hairpin loops of their H-chain CDRs (complementarity determining regions) bound to a carboxylate side chain. These have been engineered to give rise to monoclonal nest-containing antibodies specific for proteins with phosphorylated serines and threonines. [15]

Most PDZ domains have an RL nest at the beginning of the first beta-strand, with the function of recognizing the carboxylate group at the C-terminus of the domain's peptide or protein ligand. [16]

Related Research Articles

Alpha helix type of secondary structure

The alpha helix (α-helix) is a common motif in the secondary structure of proteins and is a right hand-helix conformation in which every backbone N−H group hydrogen bonds to the backbone C=O group of the amino acid located three or four residues earlier along the protein sequence.

Beta sheet Common motif of regular secondary structure in proteins; stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation

The β-sheet is a common motif of regular secondary structure in proteins. Beta sheets consist of beta strands connected laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation. The supramolecular association of β-sheets has been implicated in formation of the protein aggregates and fibrils observed in many human diseases, notably the amyloidoses such as Alzheimer's disease.

Active site active site of an enzyme; region of an enzyme where substrate molecules bind and undergo a chemical reaction to form products

In biology, the active site is the region of an enzyme where substrate molecules bind and undergo a chemical reaction. The active site consists of amino acid residues that form temporary bonds with the substrate and residues that catalyse a reaction of that substrate. Although the active site occupies only ~10–20% of the volume of an enzyme, it is the most important part as it directly catalyzes the chemical reaction. It usually consists of three to four amino acids, while other amino acids within the protein are required to maintain the tertiary structure of the enzyme.

Protein structure prediction

Protein structure prediction is the inference of the three-dimensional structure of a protein from its amino acid sequence—that is, the prediction of its folding and its secondary and tertiary structure from its primary structure. Structure prediction is fundamentally different from the inverse problem of protein design. Protein structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Every two years, the performance of current methods is assessed in the CASP experiment. A continuous evaluation of protein structure prediction web servers is performed by the community project CAMEO3D.

In a chain-like biological molecule, such as a protein or nucleic acid, a structural motif is a supersecondary structure, which also appears in a variety of other molecules. Motifs do not allow us to predict the biological functions: they are found in proteins and enzymes with dissimilar functions.

ATP-binding motif

An ATP, adenosine triphosphate, binding motif is a 250 residue sequence within an ATP binding protein’s primary structure. The binding motif is associated with a protein’s structure and/or function. ATP is a molecule of energy, and can be a coenzyme, involved in a number of biological reactions. ATP is proficient at interacting with other molecules through a binding site. The ATP binding site is the environment in which ATP catalytically actives the enzyme and, as a result, is hydrolyzed to ADP. The binding of ATP causes a conformational change to the enzyme it is interacting with.

A turn is an element of secondary structure in proteins where the polypeptide chain reverses its overall direction.

A beta bulge can be described as a localized disruption of the regular hydrogen bonding of beta sheet by inserting extra residues into one or both hydrogen bonded β-strands.

Beta hairpin secondary structure motif of proteins

The beta hairpin is a simple protein structural motif involving two beta strands that look like a hairpin. The motif consists of two strands that are adjacent in primary structure, oriented in an antiparallel direction, and linked by a short loop of two to five amino acids. Beta hairpins can occur in isolation or as part of a series of hydrogen bonded strands that collectively comprise a beta sheet.

EF hand InterPro Domain

The EF hand is a helix-loop-helix structural domain or motif found in a large family of calcium-binding proteins.

β turns are the most common form of turns—a type of non-regular secondary structure in proteins that cause a change in direction of the polypeptide chain. They are very common motifs in proteins and polypeptides. Each consists of four amino acid residues. They can be defined in two ways: 1. By the possession of an intra-main-chain hydrogen bond between the CO of residue i and the NH of residue i+3; Alternatively, 2. By having a distance of less than 7Å between the Cα atoms of residues i and i+3. The hydrogen bond criterion is the one most appropriate for everyday use, partly because it gives rise to four distinct categories; the distance criterion gives rise to the same four categories but yields additional turn types.

The Walker A and Walker B motifs are protein sequence motifs, known to have highly conserved three-dimensional structures. These were first reported in ATP-binding proteins by Walker and co-workers in 1982.

Niche (protein structural motif)

In the area of protein structural motifs, niches are three or four amino acid residue features in which main-chain CO groups are bridged by positively charged or δ+ groups. The δ+ groups include groups with two hydrogen bond donor atoms such as NH2 groups and water molecules. In typical proteins, 7% of amino acid residues belong to niches bound to a δ+ group, while another 7% have the conformation but no single cationic bridging group is detected.

Schellman loop

Schellman loops are commonly occurring structural features of proteins and polypeptides. Each has six amino acid residues with two specific inter-mainchain hydrogen bonds and a characteristic main chain dihedral angle conformation. The CO group of residue i is hydrogen-bonded to the NH of residue i+5, and the CO group of residue i+1 is hydrogen-bonded to the NH of residue i+4. Residues i+1, i+2, and i+3 have negative φ (phi) angle values and the phi value of residue i+4 is positive. Schellman loops incorporate a three amino acid residue RL nest, in which three mainchain NH groups form a concavity for hydrogen bonding to carbonyl oxygens. About 2.5% of amino acids in proteins belong to Schellman loops. Two websites are available for examining small motifs in proteins, Motivated Proteins: ; or PDBeMotif:.

The Asx turn is a structural feature in proteins and polypeptides. It consists of three amino acid residues in which residue i is an aspartate (Asp) or asparagine (Asn) that forms a hydrogen bond from its sidechain CO group to the mainchain NH group of residue i+2. About 14% of Asx residues present in proteins belong to Asx turns.

Catgrip

Catgrips are small cation-binding molecular features of proteins and peptides. Each consists of the main chain atoms only of three consecutive amino acid residues. The first and third main chain CO groups bind the cations, often calcium, magnesium, potassium or sodium, with no side chain involvement. Many catgrips bind a water molecule instead of a cation; it is hydrogen-bonded to the first and third main chain CO groups. Catgrips are found as calcium-binding features in annexins, matrix metalloproteinases (e.g.serralysins), subtilisins and phospholipase A2. They are also observed in synthetic peptides and in cyclic hexapeptides made from alternating D,L amino acids.

Asx motif

The Asx motif is a commonly occurring feature in proteins and polypeptides. It consists of four or five amino acid residues with either aspartate or asparagine as the first residue. It is defined by two internal hydrogen bonds. One is between the side chain oxygen of residue i and the main chain NH of residue i+2 or i+3; the other is between the main chain oxygen of residue i and the main chain NH of residue i+3 or i+4. Asx motifs occur commonly in proteins and polypeptides.

ST motif

The ST motif is a commonly occurring feature in proteins and polypeptides. It consists of four or five amino acid residues with either serine or threonine as the first residue. It is defined by two internal hydrogen bonds. One is between the side chain oxygen of residue i and the main chain NH of residue i + 2 or i + 3; the other is between the main chain oxygen of residue i and the main chain NH of residue i + 3 or i + 4. Two websites are available for finding and examining ST motifs in proteins, Motivated Proteins: and PDBeMotif.

Amide Rings are small motifs in proteins and polypeptides. They consist of 9-atom or 11-atom rings formed by two CO...HN hydrogen bonds between a side chain amide group and the main chain atoms of a short polypeptide. They are observed with glutamine or asparagine side chains within proteins and polypeptides. Structurally similar rings occur in the binding of purine, pyrimidine and nicotinamide bases to the main chain atoms of proteins. About 4% of asparagines and glutamines form amide rings; in databases of protein domain structures, one is present, on average, every other protein.

Beta bulge loop

Beta bulge loops are commonly occurring motifs in proteins and polypeptides consisting of five to six amino acids. There are two types: type 1, which is a pentapeptide; and type 2, with six amino acids. They are regarded as a type of beta bulge, and have the alternative name of type G1 beta bulge. Compared to other beta bulges, beta bulge loops give rise to chain reversal such that they often occur at the loop ends of beta hairpins; hairpins of this sort can be described as 3:5 or 4:6. Two websites are available for finding and examining β bulge loops in proteins, Motivated Proteins: and PDBeMotif:.

References

  1. Watson, JD; Milner-White (2002). "A novel main-chain anion-binding site in proteins: The nest. A particular combination of phi,psi values in successive residues gives rise to anion-binding sites that occur commonly and are found often at functionally important regions". Journal of Molecular Biology. 315 (2): 171–182. doi:10.1006/jmbi.2001.5227. PMID   11779237.
  2. Pal, D; Suhnel (2002). "New principles of protein structure: nests, eggs and what next?". Angew Chem Int Ed. 41 (24): 4663–4665. doi:10.1002/anie.200290009. PMID   12481319.
  3. Milner-White, EJ; Nissink (2004). "Recurring main-chain anion-binding motifs in short polypeptides: nests". Acta Crystallographica Section D. D60: 1935–1942. doi: 10.1107/s0907444904021390 . PMID   15502299.
  4. Pajewski, R; Ferdani (2005). "Cation Dependence of Chloride Ion Complexation by Open-Chained Receptor Molecules in Chloroform Solution". Journal of the American Chemical Society. 127 (51): 18281–18295. doi:10.1021/ja0558894. PMID   16366583.
  5. Berkessel, A; Koch (2006). "Asymmetric enone epoxidation by solid-phase bound peptides: further evidence for catalyst helicity and catalytic activity of individual strands". Biopolymers. 84 (1): 90–96. doi:10.1002/bip.20413.
  6. Milner-White, EJ; Russell (2006). "Predicting the conformations of proteins and peptides in early evolution". Biology Direct. 3: 3. doi:10.1186/1745-6150-3-3. PMC   2241844 . PMID   18226248.
  7. Watson, JD; Laskowski (2005). "ProFunc: a server for predicting protein function from 3D structure". Nucleic Acids Research. 33 (Web Server): W89–W93. doi:10.1093/nar/gki414. PMC   1160175 . PMID   15980588.
  8. Langton, MJ; Serpell CJ; Beer PD (2016). "Anion recognition in water: Recent advances from a supramolecular and macromolecular perspective". Angewandte Chemie International Edition. 55: 1974–1987. doi:10.1002/anie.201506589. PMC   4755225 . PMID   26612067.
  9. Cremer, P; Flood AS; Gibb BC; Mobley DL (2018). "Collaborative routes to clarifying the murky waters of aquaeous supramolcular chemistry". Nature Chemistry. 10: 8–16. doi:10.1038/nchem.2894.
  10. Watson, JD; Milner-White (2002). "The conformations of polypeptide chains where the main-chain parts of successive residues are enantiomeric. Their occurrence in cation and anion-binding regions of proteins". Journal of Molecular Biology. 315 (15): 183–191. doi:10.1006/jmbi.2001.5228. PMID   11779238.
  11. Milner-White, EJ; Watson (2006). "Amyloid formation may involve alpha- to beta sheet interconversion via peptide plane flipping". Structure. 14 (9): 1369–1376. doi:10.1016/j.str.2006.06.016. PMID   16962968.
  12. Hayward, S; Milner-White (2008). "The geometry of α-sheet: Implications for its possible function as amyloid precursor in proteins". Proteins. 71 (1): 415–425. doi:10.1002/prot.21717. PMID   17957773.
  13. Hayward, S; Milner-White (2011). "Simulation of the β- to α-sheet transition results in a twisted sheet for antiparallel and an α-nanotube for parallel strands: implications for amyloid formation". Proteins. 79 (11): 3193–3207. doi:10.1002/prot.23154. PMID   21989939.
  14. Bianchi, A; Giorgi A; Ruzza P; Toniolo C (2013). "A synthetic hexapeptide designed to resemble a proteinaceous P-loop nest is shown to bind inorganic phosphate". Proteins. 80: 1418–1424. doi:10.1002/prot.24038. PMID   22275093.
  15. Koerber, JT; Thomsen ND; Hannigan BT; DeGrado WF; Wells JA (2013). "Nature-inspired design of motif-specific antibody scaffolds". Nature Biotechnology. 31 (10): 916–921. doi:10.1038/nbt.2672. PMC   3795957 . PMID   23955275.
  16. Lee, H-J; Zheng JJ (2010). "PDZ Domains and their binding Partners: Structure Specificity and Modification". Cell Communication and Signaling. 8: 8. doi:10.1186/1478-811x-8-8. PMC   2891790 . PMID   20509869.
  1. Leader, DP; Milner-White (2009). "Motivated Proteins: A web application for studying small three-dimensional protein motifs". BMC Bioinformatics. 10 (1): 60. doi:10.1186/1471-2105-10-60. PMC   2651126 . PMID   19210785.
  2. Golovin, A; Henrick (2008). "MSDmotif: exploring protein sites and motifs". BMC Bioinformatics. 9 (1): 312. doi:10.1186/1471-2105-9-312. PMC   2491636 . PMID   18637174.