Nobiletin

Last updated
Nobiletin
Nobiletin.svg
Nobiletin molecule ball.png
Names
IUPAC name
3′,4′,5,6,7,8-Hexamethoxyflavone
Systematic IUPAC name
2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one
Other names
Hexamethoxyflavone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C21H22O8/c1-23-13-8-7-11(9-15(13)24-2)14-10-12(22)16-17(25-3)19(26-4)21(28-6)20(27-5)18(16)29-14/h7-10H,1-6H3 X mark.svgN
    Key: MRIAQLRQZPPODS-UHFFFAOYSA-N X mark.svgN
  • InChI=1/C21H22O8/c1-23-13-8-7-11(9-15(13)24-2)14-10-12(22)16-17(25-3)19(26-4)21(28-6)20(27-5)18(16)29-14/h7-10H,1-6H3
    Key: MRIAQLRQZPPODS-UHFFFAOYAI
  • c1c(OC)c(OC)ccc1C2=CC(=O)c3c(OC)c(OC)c(OC)c(OC)c3O2
Properties
C21H22O8
Molar mass 402.399 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Nobiletin is a flavonoid isolated from citrus peels. It is an O-methylated flavone that has the activity to rescue bulbectomy-induced memory impairment. [1]

Contents

Potential pharmacology

Nobiletin was found to potentially inhibit cartilage degradation. [2]

Nobiletin was shown to augment AMPA receptor activity and long-term potentiation in cell culture. [3] Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis have been described. [4] Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer[5].

Related Research Articles

<span class="mw-page-title-main">AMPA receptor</span> Transmembrane protein family

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor is an ionotropic transmembrane receptor for glutamate (iGluR) that mediates fast synaptic transmission in the central nervous system (CNS). It has been traditionally classified as a non-NMDA-type receptor, along with the kainate receptor. Its name is derived from its ability to be activated by the artificial glutamate analog AMPA. The receptor was first named the "quisqualate receptor" by Watkins and colleagues after a naturally occurring agonist quisqualate and was only later given the label "AMPA receptor" after the selective agonist developed by Tage Honore and colleagues at the Royal Danish School of Pharmacy in Copenhagen. The GRIA2-encoded AMPA receptor ligand binding core was the first glutamate receptor ion channel domain to be crystallized.

<span class="mw-page-title-main">Brain-derived neurotrophic factor</span> Protein found in humans

Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein that, in humans, is encoded by the BDNF gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the canonical nerve growth factor (NGF), a family which also includes NT-3 and NT-4/NT-5. Neurotrophic factors are found in the brain and the periphery. BDNF was first isolated from a pig brain in 1982 by Yves-Alain Barde and Hans Thoenen.

<span class="mw-page-title-main">NF-κB</span> Nuclear transcriptional activator that binds to enhancer elements in many different cell types

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is a family of transcription factor protein complexes that controls transcription of DNA, cytokine production and cell survival. NF-κB is found in almost all animal cell types and is involved in cellular responses to stimuli such as stress, cytokines, free radicals, heavy metals, ultraviolet irradiation, oxidized LDL, and bacterial or viral antigens. NF-κB plays a key role in regulating the immune response to infection. Incorrect regulation of NF-κB has been linked to cancer, inflammatory and autoimmune diseases, septic shock, viral infection, and improper immune development. NF-κB has also been implicated in processes of synaptic plasticity and memory.

<span class="mw-page-title-main">Genistein</span> Chemical compound

Genistein (C15H10O5) is a naturally occurring compound that structurally belongs to a class of compounds known as isoflavones. It is described as an angiogenesis inhibitor and a phytoestrogen.

<i>Phellodendron amurense</i> Species of tree

Phellodendron amurense is a species of tree in the family Rutaceae, commonly called the Amur cork tree. It is a major source of huáng bò, one of the 50 fundamental herbs used in traditional Chinese medicine. The Ainu people used this plant, called shikerebe-ni, as a painkiller. It is known as hwangbyeok in Korean and (キハダ) kihada in Japanese.

<span class="mw-page-title-main">IKBKG</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B essential modulator (NEMO) also known as inhibitor of nuclear factor kappa-B kinase subunit gamma (IKK-γ) is a protein that in humans is encoded by the IKBKG gene. NEMO is a subunit of the IκB kinase complex that activates NF-κB. The human gene for IKBKG is located on the chromosome band Xq28. Multiple transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Honokiol</span> Chemical compound

Honokiol is a lignan isolated from the bark, seed cones, and leaves of trees belonging to the genus Magnolia. It has been identified as one of the chemical compounds in some traditional eastern herbal medicines along with magnolol, 4-O-methylhonokiol, and obovatol.

<span class="mw-page-title-main">Toll-like receptor 5</span> Protein-coding gene in the species Homo sapiens

Toll-like receptor 5, also known as TLR5, is a protein which in humans is encoded by the TLR5 gene. It is a member of the toll-like receptor (TLR) family. TLR5 is known to recognize bacterial flagellin from invading mobile bacteria. It has been shown to be involved in the onset of many diseases, which includes Inflammatory bowel disease. Recent studies have also shown that malfunctioning of TLR5 is likely related to rheumatoid arthritis, osteoclastogenesis, and bone loss. Abnormal TLR5 functioning is related to the onset of gastric, cervical, endometrial and ovarian cancers.

<span class="mw-page-title-main">IKK2</span> Protein-coding gene in the species Homo sapiens

IKK-β also known as inhibitor of nuclear factor kappa-B kinase subunit beta is a protein that in humans is encoded by the IKBKB gene.

<span class="mw-page-title-main">NFKB1</span> Protein-coding gene in the species Homo sapiens

Nuclear factor NF-kappa-B p105 subunit is a protein that in humans is encoded by the NFKB1 gene.

<span class="mw-page-title-main">RELA</span> Protein-coding gene in the species Homo sapiens

Transcription factor p65 also known as nuclear factor NF-kappa-B p65 subunit is a protein that in humans is encoded by the RELA gene.

<span class="mw-page-title-main">CHUK</span> Protein-coding gene in humans

Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-α) also known as IKK1 or conserved helix-loop-helix ubiquitous kinase (CHUK) is a protein kinase that in humans is encoded by the CHUK gene. IKK-α is part of the IκB kinase complex that plays an important role in regulating the NF-κB transcription factor. However, IKK-α has many additional cellular targets, and is thought to function independently of the NF-κB pathway to regulate epidermal differentiation.

<span class="mw-page-title-main">RELB</span> Protein-coding gene in the species Homo sapiens

Transcription factor RelB is a protein that in humans is encoded by the RELB gene.

<span class="mw-page-title-main">NFKBIB</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B inhibitor beta is a protein that in humans is encoded by the NFKBIB gene.

Leukotriene B<sub>4</sub> receptor 2 Protein-coding gene in the species Homo sapiens

Leukotriene B4 receptor 2, also known as BLT2, BLT2 receptor, and BLTR2, is an Integral membrane protein that is encoded by the LTB4R2 gene in humans and the Ltbr2 gene in mice.

<span class="mw-page-title-main">MAP3K14</span> Protein-coding gene in the species Homo sapiens

Mitogen-activated protein kinase kinase kinase 14 also known as NF-kappa-B-inducing kinase (NIK) is an enzyme that in humans is encoded by the MAP3K14 gene.

<span class="mw-page-title-main">TANK-binding kinase 1</span> Protein-coding gene in the species Homo sapiens

TBK1 is an enzyme with kinase activity. Specifically, it is a serine / threonine protein kinase. It is encoded by the TBK1 gene in humans. This kinase is mainly known for its role in innate immunity antiviral response. However, TBK1 also regulates cell proliferation, apoptosis, autophagy, and anti-tumor immunity. Insufficient regulation of TBK1 activity leads to autoimmune, neurodegenerative diseases or tumorigenesis.

<span class="mw-page-title-main">NFKBIZ</span> Protein-coding gene in the species Homo sapiens

NF-kappa-B inhibitor zeta (IκBζ) is a protein that in humans is encoded by the NFKBIZ gene. This gene is a member of the ankyrin-repeat family and is induced by lipopolysaccharide (LPS). The C-terminal portion of the encoded product which contains the ankyrin repeats, shares high sequence similarity with the I kappa B family of proteins. The latter are known to play a role in inflammatory responses to LPS by their interaction with NF-B proteins through ankyrin-repeat domains. Studies in mouse indicate that this gene product is one of the nuclear I kappa B proteins and an activator of IL-6 production. Two transcript variants encoding different isoforms have been found for this gene.

<span class="mw-page-title-main">Fisetin</span> Chemical compound

Fisetin (7,3′,4′-flavon-3-ol) is a plant flavonol from the flavonoid group of polyphenols. It can be found in many plants, where it serves as a yellow/ochre colouring agent. It is also found in many fruits and vegetables, such as strawberries, apples, persimmons, onions and cucumbers. Its chemical formula was first described by Austrian chemist Josef Herzig in 1891.

<span class="mw-page-title-main">Forsythoside B</span> Chemical compound

Forsythoside B is a natural product from the phenylpropanoid glycoside group, which is found in a number of plant species such as Marrubium alysson, Phlomis armeniaca, Scutellaria salviifolia, Phlomoides tuberosa, Phlomoides rotata, Pedicularis longiflora and Teucrium chamaedrys, several of which are used in Chinese traditional medicine in preparations such as Shuanghuanglian (双黄连). It acts as an inhibitor of inflammatory mediators such as TNF-alpha, IL-6, IκB and NF-κB, as well as the temperature sensitive channel TRPV3, but also activates the RhoA/ROCK signaling pathway which can cause hypersensitivity reactions when it is injected intravenously.

References

  1. Nagase H, Yamakuni T, Matsuzaki K, Maruyama Y, Kasahara J, Hinohara Y, Kondo S, Mimaki Y, Sashida Y, Tank AW, Fukunaga K, Ohizumi Y (2005). "Mechanism of Neurotrophic Action of Nobiletin in PC12D Cells". Biochemistry. 44 (42): 13683–13691. doi:10.1021/bi050643x. ISSN   0006-2960. PMID   16229458. Nobiletin is a nonpeptide compound with a low molecular weight from a citrus fruit and has the activity to rescue bulbectomy-induced memory impairment
  2. Henrotin, Y.; C. Lambert; D. Couchourel; C. Ripoll; E. Chiotelli (January 2011). "Nutraceuticals: do they represent a new era in the management of osteoarthritis? – a narrative review from the lessons taken with five products". Osteoarthritis and Cartilage. 19 (1): 1–21. doi: 10.1016/j.joca.2010.10.017 . PMID   21035558 . Retrieved 2011-12-27.
  3. Matsuzaki K, Miyazaki K, Sakai S, Yawo H, Nakata N, Moriguchi S, Fukunaga K, Yokosuka A, Sashida Y, Mimaki Y, Yamakuni T, Ohizumi Y (2008). "Nobiletin, a citrus flavonoid with neurotrophic action, augments protein kinase A-mediated phosphorylation of the AMPA receptor subunit, GluR1, and the postsynaptic receptor response to glutamate in murine hippocampus". Eur J Pharmacol. 578 (2–3): 194–200. doi:10.1016/j.ejphar.2007.09.028. PMID   17976577.
  4. Wu, Xian; Song, Mingyue; Qiu, Peiju; Rakariyatham, Kanyasiri; Li, Fang; Gao, Zili; Cai, Xiaokun; Wang, Minqi; Xu, Fei; Zheng, Jinkai; Xiao, Hang (1 April 2017). "Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis". Carcinogenesis. 38 (4): 455–464. doi:10.1093/carcin/bgx018. ISSN   0143-3334. PMC   6248647 . PMID   28207072.

[5] Kim E, Kim YJ, Ji Z, Kang JM, Wirianto M, Paudel KR, Smith JA, Ono K, Kim JA, Eckel-Mahan K, Zhou X. ROR activation by Nobiletin enhances antitumor efficacy via suppression of IκB/NF-κB signaling in triple-negative breast cancer. Cell death & disease. 2022 Apr 19;13(4):374.