Names | |||
---|---|---|---|
Preferred IUPAC name Chloroethane | |||
Other names | |||
Identifiers | |||
3D model (JSmol) | |||
ChEBI | |||
ChEMBL | |||
ChemSpider | |||
ECHA InfoCard | 100.000.755 | ||
KEGG | |||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
C2H5Cl | |||
Molar mass | 64.51 g·mol−1 | ||
Appearance | Colorless gas | ||
Odor | Pungent, ethereal [2] | ||
Density | 0.921 g/cm3 (0-4 °C) [3] 0.8898 g/cm3 (25 °C) | ||
Melting point | −138.7 °C (−217.7 °F; 134.5 K) | ||
Boiling point | 12.27 °C (54.09 °F; 285.42 K) decomposes at 510 °C [4] | ||
0.447 g/100 mL (0 °C) 0.574 g/100 mL (20 °C) [5] [4] | |||
Solubility | Soluble in alcohol, ether [6] | ||
Solubility in ethanol | 48.3 g/100 g (21 °C) [4] | ||
Vapor pressure | 8.4 kPa (-40 °C) 62.3 kPa (0 °C) [7] 134.6 kPa (20 °C) [2] | ||
Henry's law constant (kH) | 11.1 L·atm/mol (24 °C) [2] | ||
Refractive index (nD) | 1.3676 (20 °C) 1.001 (25 °C) [2] | ||
Viscosity | 0.279 cP (10 °C) [2] | ||
Structure | |||
2.06 D | |||
Thermochemistry | |||
Heat capacity (C) | 104.3 J/mol·K [4] | ||
Std molar entropy (S⦵298) | 275.7 J/mol·K [4] | ||
Std enthalpy of formation (ΔfH⦵298) | -137 kJ/mol [4] [7] | ||
Gibbs free energy (ΔfG⦵) | -59.3 kJ/mol [4] | ||
Pharmacology | |||
N01BX01 ( WHO ) | |||
Hazards | |||
Occupational safety and health (OHS/OSH): | |||
Main hazards | Flammable | ||
GHS labelling: | |||
[3] | |||
Danger | |||
H220, H351, H412 [3] | |||
P210, P273, P281, P410+P403 [3] | |||
NFPA 704 (fire diamond) | |||
Flash point | −43 °C (−45 °F; 230 K) open cup [5] −50 °C (−58 °F; 223 K) closed cup [3] [6] | ||
494 to 519 °C (921 to 966 °F; 767 to 792 K) [4] [6] | |||
Explosive limits | 3.8%-15.4% [8] | ||
Lethal dose or concentration (LD, LC): | |||
LC50 (median concentration) | 59,701 ppm (rat, 2 hr) 54,478 ppm (mouse, 2 hr) [9] | ||
LCLo (lowest published) | 40,000 ppm (guinea pig, 45 min) [9] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | TWA 1000 ppm (2600 mg/m3) [8] | ||
REL (Recommended) | Handle with caution in the workplace. [8] | ||
IDLH (Immediate danger) | 3800 ppm [8] | ||
Legal status | |||
Related compounds | |||
Related haloalkanes | 1,1-dichloroethane 1,2-dichloroethane Contents | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Chloroethane, commonly known as ethyl chloride, is a chemical compound with chemical formula CH3CH2Cl, once widely used in producing tetraethyllead, a gasoline additive. It is a colorless, flammable gas or refrigerated liquid with a faintly sweet odor. [11]
Ethyl chloride was first synthesized by Basil Valentine by reacting ethanol and hydrochloric acid in 1440. [11] Glauber made it in 1648 by reacting ethanol and zinc chloride. [11]
Chloroethane is produced by hydrochlorination of ethylene: [11]
At various times in the past, chloroethane has also been produced from ethanol and hydrochloric acid, from ethane and chlorine, or from ethanol and phosphorus trichloride, but these routes are no longer economical. Some chloroethane is generated as a byproduct of polyvinyl chloride production.
Chloroethane is an inexpensive ethylating agent. It reacts with aluminium metal to give ethylaluminium sesquichloride, a precursor to polymers and other useful organoaluminium compounds. [12] Chloroethane is used to convert cellulose to ethylcellulose, a thickening agent and binder in paints, cosmetics, and similar products.
Like other chlorinated hydrocarbons, chloroethane has been used as a refrigerant, an aerosol spray propellant, an anesthetic, and a blowing agent for foam packaging. For a time it was used as a promoter chemical in the aluminium chloride catalyzed process to produce ethylbenzene, the precursor for styrene monomer. At present though, it is not widely used in any of these roles.
Beginning in 1922 and continuing through most of the 20th century, the major use of chloroethane was to produce tetraethyllead (TEL), an anti-knock additive for gasoline. TEL has been or is being phased out in most of the industrialized world, and the demand for chloroethane has fallen sharply. [11]
Chloroethane has a low boiling point, so when applied topically, the heat absorbed by the boiling liquid produces a deep and rapid chill. When sprayed on the skin, this chill has a mild anesthetic effect, which can be useful when removing splinters or incising abscesses in a clinical setting. Chloroethane was standard equipment in casualty wards.[ when? ] It was commonly used to induce general anaesthesia before continuing with di-ethyl ether, which has a much slower uptake.[ citation needed ] In dentistry, chloroethane is used as one of the means of diagnosing a 'dead tooth', i.e., one in which the pulp has died. A small amount of the substance is placed on the suspect tooth using a cotton wad; if the tooth is still alive this should be sensed by the patient as mild discomfort that subsides when the wad is removed.[ citation needed ]
Chloroethane is a recreational inhalant drug, although it should not be confused with a duster or canned air, which is composed of fluorinated low-weight hydrocarbons such as tetrafluoromethane, chlorodifluoromethane or another similar gas.
In Brazil, it is a major component of a traditional (though illegal) drug taken during Carnaval, known locally as "lança-perfume" [13] (lit. perfume launcher or sprayer).
This section needs additional citations for verification .(December 2023) |
The vapor is flammable and narcotic, which requires care.[ citation needed ]
Monochloroethane is the least toxic of the chloroethanes. Like other chlorinated hydrocarbons, it is a central nervous system depressant, albeit a less potent one than many similar compounds. People breathing its vapors at less than 1% concentration in air usually experience no symptoms. At concentrations of 3% to 5%, victims usually exhibit symptoms similar to those of alcohol intoxication. Breathing its vapors at >15% concentration is often fatal; most commercially available handheld containers contain 30% per volume of concentrated vapors that naturally disperse in the outside air.
If exposed to concentrations higher than 6% to 8% victims often exhibit shallow breathing, loss of consciousnesses, and depressed heart-rate. They can be roused with physical contact or loud noise. At this point removal from the area of exposure is advised to restore consciousness. The long-term effects of exposure over a period of 4 or more hours will cause side effects similar to alcoholic hang-over with dehydration, dizziness, loss of clear vision and temporary loss of consciousness, which can last an hour or more. If no longer exposed to the gas, a victim will return to normal health quickly. This can be helped with intake of extra fluids, vitamins, and sugars.
Toxic over-exposure starts at 9% to 12% concentrations, the heart rate drops further, the victim may have more shallow breathing or stop all together, they do not respond to any outside stimulation and may begin to involuntarily gasp, belch or vomit, which can lead to aspiration if the victim is not turned on their side. This constitutes a medical emergency and requires prompt action. It is advised to move the victim to clear air and administer forced breathing for them to purge the lungs of the toxic fumes. If the victim recovers quickly enough, hospitalization may not be required, but will require a medical examination to ensure that no organ damage has occurred.
At >12% concentration, the victim's heart, lungs and kidneys begin to fail. Immediate CPR followed by medical support measures may be required to prevent fatal kidney, lung and heart failure. Singer Darius Campbell Danesh died of "toxic effects of chloroethane" as well as suffocation. [14]
Studies on the effects of chronic ethyl chloride exposure in animals have given inconsistent results, and no data exists for its long-term effects on humans.
While chloroethane is not classified as carcinogenic to humans specifically, [15] it is still used in medicine as a local anesthetic. [16]
A solvent is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for polar molecules, and the most common solvent used by living things; all the ions and proteins in a cell are dissolved in water within the cell.
Chloroform, or trichloromethane, is an organochloride with the formula CHCl3 and a common solvent. It is a volatile, colorless, sweet-smelling, dense liquid produced on a large scale as a precursor to refrigerants and PTFE. Chloroform was once used as an inhalational anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water.
Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.
Chloromethane, also called methyl chloride, Refrigerant-40, R-40 or HCC 40, is an organic compound with the chemical formula CH3Cl. One of the haloalkanes, it is a colorless, sweet-smelling, flammable gas. Methyl chloride is a crucial reagent in industrial chemistry, although it is rarely present in consumer products, and was formerly utilized as a refrigerant. Most chloromethane is biogenic.
Vinyl chloride is an organochloride with the formula H2C=CHCl. It is also called vinyl chloride monomer (VCM) or chloroethene. This colorless compound is an important industrial chemical chiefly used to produce the polymer polyvinyl chloride (PVC). Vinyl chloride monomer is among the top twenty largest petrochemicals (petroleum-derived chemicals) in world production. The United States remains the largest vinyl chloride manufacturing region because of its low-production-cost position in chlorine and ethylene raw materials. China is also a large manufacturer and one of the largest consumers of vinyl chloride. Vinyl chloride is a flammable gas that has a sweet odor and is carcinogenic. It can be formed in the environment when soil organisms break down chlorinated solvents. Vinyl chloride that is released by industries or formed by the breakdown of other chlorinated chemicals can enter the air and drinking water supplies. Vinyl chloride is a common contaminant found near landfills. Before the 1970s, vinyl chloride was used as an aerosol propellant and refrigerant.
The organic compound 1,1,1-trichloroethane, also known as methyl chloroform and chlorothene, is a chloroalkane with the chemical formula CH3CCl3. It is an isomer of 1,1,2-trichloroethane. A colourless and sweet-smelling liquid, it was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and as such use has declined since 1996. Trichloroethane should not be confused with the similar-sounding trichloroethene which is also commonly used as a solvent.
Trichloroethylene (TCE) is a halocarbon with the formula C2HCl3, commonly used as an industrial metal degreasing solvent. It is a clear, colourless, non-flammable, volatile liquid with a chloroform-like pleasant mild smell and sweet taste. Its IUPAC name is trichloroethene. Trichloroethylene has been sold under a variety of trade names. Industrial abbreviations include TCE, trichlor, Trike, Tricky and tri. Under the trade names Trimar and Trilene, it was used as a volatile anesthetic and as an inhaled obstetrical analgesic. It should not be confused with the similar 1,1,1-trichloroethane, which was commonly known as chlorothene.
Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds containing at least one covalently bonded atom of chlorine. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.
Ethyl acetate is the organic compound with the formula CH3CO2CH2CH3, simplified to C4H8O2. This flammable, colorless liquid has a characteristic sweet smell and is used in glues, nail polish removers, and the decaffeination process of tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent.
Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.
tert-Butyl alcohol is the simplest tertiary alcohol, with a formula of (CH3)3COH (sometimes represented as t-BuOH). Its isomers are 1-butanol, isobutanol, and butan-2-ol. tert-Butyl alcohol is a colorless solid, which melts near room temperature and has a camphor-like odor. It is miscible with water, ethanol and diethyl ether.
Chlorobenzene (abbreviated PhCl) is an aryl chloride and the simplest of the chlorobenzenes, consisting of a benzene ring substituted with one chlorine atom. Its chemical formula is C6H5Cl. This colorless, flammable liquid is a common solvent and a widely used intermediate in the manufacture of other chemicals.
The chemical compound 1,2-dichloroethane, commonly known as ethylene dichloride (EDC), is a chlorinated hydrocarbon. It is a colourless liquid with a chloroform-like odour. The most common use of 1,2-dichloroethane is in the production of vinyl chloride, which is used to make polyvinyl chloride (PVC) pipes, furniture and automobile upholstery, wall coverings, housewares, and automobile parts. 1,2-Dichloroethane is also used generally as an intermediate for other organic chemical compounds, and as a solvent. It forms azeotropes with many other solvents, including water and other chlorocarbons.
Benzyl chloride, or α-chlorotoluene, is an organic compound with the formula C6H5CH2Cl. This colorless liquid is a reactive organochlorine compound that is a widely used chemical building block.
Ethylamine, also known as ethanamine, is an organic compound with the formula CH3CH2NH2. This colourless gas has a strong ammonia-like odor. It condenses just below room temperature to a liquid miscible with virtually all solvents. It is a nucleophilic base, as is typical for amines. Ethylamine is widely used in chemical industry and organic synthesis. It is a DEA list I chemical by 21 CFR § 1310.02.
1,1-Dichloroethylene, commonly called vinylidene chloride or 1,1-DCE, is an organochloride with the molecular formula CCl2CH2. It is a colorless liquid with a sharp odor. Like most chlorocarbons, it is poorly soluble in water but soluble in organic solvents. 1,1-DCE was the precursor to the original clingwrap, Saran, for food, but this application has been phased out.
Antimony pentachloride is a chemical compound with the formula SbCl5. It is a colourless oil, but typical samples are yellowish due to dissolved chlorine. Owing to its tendency to hydrolyse to hydrochloric acid, SbCl5 is a highly corrosive substance and must be stored in glass or PTFE containers.
1,1,2,2-tetrachloroethane (TeCA), also known by the brand names Bonoform, Cellon and Westron, is an organic compound. It is colorless liquid and has a sweet odor. It is used as an industrial solvent and as a separation agent. TeCA is toxic and it can be inhaled, consumed or absorbed through the skin. After exposure, nausea, dizziness or even liver damage may occur.
Hexachlorobutadiene, (often abbreviated as "HCBD") Cl2C=C(Cl)C(Cl)=CCl2, is a colorless liquid at room temperature that has an odor similar to that of turpentine. It is a chlorinated aliphatic diene with niche applications but is most commonly used as a solvent for other chlorine-containing compounds. Structurally, it has a 1,3-butadiene core, but fully substituted with chlorine atoms.
Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.