Carbon tetrafluoride

Last updated
Carbon tetrafluoride
Carbon-tetrafluoride-2D-dimensions.png
Carbon-tetrafluoride-3D-balls-B.png
Carbon Tetrafluoride.png
Names
IUPAC names
Tetrafluoromethane
Carbon tetrafluoride
Other names
Carbon tetrafluoride, Perfluoromethane, Tetrafluorocarbon, Freon 14, Halon 14, Arcton 0, CFC 14, PFC 14, R 14, UN 1982
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.815 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-896-5
PubChem CID
RTECS number
  • FG4920000
UNII
  • InChI=1S/CF4/c2-1(3,4)5 Yes check.svgY
    Key: TXEYQDLBPFQVAA-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/CF4/c2-1(3,4)5
  • FC(F)(F)F
Properties
CF4
Molar mass 88.0043 g/mol
AppearanceColorless gas
Odor odorless
Density 3.72 g/L, gas (15 °C)
Melting point −183.6 °C (−298.5 °F; 89.5 K)
Boiling point −127.8 °C (−198.0 °F; 145.3 K)
0.005%V at 20 °C
0.0038%V at 25 °C
Solubility soluble in benzene, chloroform
Vapor pressure 3.65 MPa at 15 °C
106.5 kPa at −127 °C
5.15 atm-cu m/mole
1.0004823 [1]
Viscosity 17.32 μPa·s [2]
Structure
Tetragonal
Tetrahedral
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Simple asphyxiant and greenhouse gas
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazard SA: Simple asphyxiant gas. E.g. nitrogen, helium
1
0
0
SA
Flash point Non-flammable
Safety data sheet (SDS) ICSC 0575
Related compounds
Other anions
Tetrachloromethane
Tetrabromomethane
Tetraiodomethane
Other cations
Silicon tetrafluoride
Germanium tetrafluoride
Tin tetrafluoride
Lead tetrafluoride
Related fluoromethanes
Fluoromethane
Difluoromethane
Fluoroform
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Tetrafluoromethane, also known as carbon tetrafluoride or R-14, is the simplest perfluorocarbon (C F 4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbon methane. It can also be classified as a haloalkane or halomethane. Tetrafluoromethane is a useful refrigerant but also a potent greenhouse gas. [3] It has a very high bond strength due to the nature of the carbon–fluorine bond.

Contents

Bonding

Because of the multiple carbon–fluorine bonds, and the high electronegativity of fluorine, the carbon in tetrafluoromethane has a significant positive partial charge which strengthens and shortens the four carbon–fluorine bonds by providing additional ionic character. Carbon–fluorine bonds are the strongest single bonds in organic chemistry. [4] Additionally, they strengthen as more carbon–fluorine bonds are added to the same carbon. In the one carbon organofluorine compounds represented by molecules of fluoromethane, difluoromethane, trifluoromethane, and tetrafluoromethane, the carbon–fluorine bonds are strongest in tetrafluoromethane. [5] This effect is due to the increased coulombic attractions between the fluorine atoms and the carbon because the carbon has a positive partial charge of 0.76. [5]

Preparation

Tetrafluoromethane is the product when any carbon compound, including carbon itself, is burned in an atmosphere of fluorine. With hydrocarbons, hydrogen fluoride is a coproduct. It was first reported in 1926. [6] It can also be prepared by the fluorination of carbon dioxide, carbon monoxide or phosgene with sulfur tetrafluoride. Commercially it is manufactured by the reaction of hydrogen fluoride with dichlorodifluoromethane or chlorotrifluoromethane; it is also produced during the electrolysis of metal fluorides MF, MF2 using a carbon electrode.

Although it can be made from a myriad of precursors and fluorine, elemental fluorine is expensive and difficult to handle. Consequently, CF
4
is prepared on an industrial scale using hydrogen fluoride: [3]

CCl2F2 + 2 HF → CF4 + 2 HCl

Laboratory synthesis

Tetrafluoromethane and silicon tetrafluoride can be prepared in the laboratory by the reaction of silicon carbide with fluorine.

SiC + 4 F2 → CF4 + SiF4

Reactions

Tetrafluoromethane, like other fluorocarbons, is very stable due to the strength of its carbon–fluorine bonds. The bonds in tetrafluoromethane have a bonding energy of 515 kJ⋅mol−1. As a result, it is inert to acids and hydroxides. However, it reacts explosively with alkali metals. Thermal decomposition or combustion of CF4 produces toxic gases (carbonyl fluoride and carbon monoxide) and in the presence of water will also yield hydrogen fluoride.

It is very slightly soluble in water (about 20 mg⋅L−1), but miscible with organic solvents.

Uses

Tetrafluoromethane is sometimes used as a low temperature refrigerant (R-14). It is used in electronics microfabrication alone or in combination with oxygen as a plasma etchant for silicon, silicon dioxide, and silicon nitride. [7] It also has uses in neutron detectors. [8]

Environmental effects

Mauna Loa tetrafluoromethane (CF4) timeseries. Mauna Loa Tetrafluoromethane.jpg
Mauna Loa tetrafluoromethane (CF4) timeseries.
PFC-14 measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in parts-per-trillion. PFC-14 mm.png
PFC-14 measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Abundances are given as pollution free monthly mean mole fractions in parts-per-trillion.
Atmospheric concentration of CF4 (PFC-14) vs. similar man-made gases (right graph). Note the log scale. Halogenated gas concentrations 1978-present.png
Atmospheric concentration of CF4 (PFC-14) vs. similar man-made gases (right graph). Note the log scale.

Tetrafluoromethane is a potent greenhouse gas that contributes to the greenhouse effect. It is very stable, has an atmospheric lifetime of 50,000 years, and a high greenhouse warming potential 6,500 times that of CO2. [9]

Tetrafluoromethane is the most abundant perfluorocarbon in the atmosphere, where it is designated as PFC-14. Its atmospheric concentration is growing. [10] As of 2019, the man-made gases CFC-11 and CFC-12 continue to contribute a stronger radiative forcing than PFC-14. [11]

Although structurally similar to chlorofluorocarbons (CFCs), tetrafluoromethane does not deplete the ozone layer [12] because the carbon–fluorine bond is much stronger than that between carbon and chlorine. [13]

Main industrial emissions of tetrafluoromethane besides hexafluoroethane are produced during production of aluminium using Hall-Héroult process. CF4 also is produced as product of the breakdown of more complex compounds such as halocarbons. [14]

Health risks

Due to its density, tetrafluoromethane can displace air, creating an asphyxiation hazard in inadequately ventilated areas. Otherwise, it is normally harmless due to its stability.

See also

Related Research Articles

<span class="mw-page-title-main">Fluorocarbon</span> Class of chemical compounds

Fluorocarbons are chemical compounds with carbon-fluorine bonds. Compounds that contain many C-F bonds often have distinctive properties, e.g., enhanced stability, volatility, and hydrophobicity. Several fluorocarbons and their derivatives are commercial polymers, refrigerants, drugs, and anesthetics.

<span class="mw-page-title-main">Halomethane</span> Halogen compounds derived from methane

Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.

<span class="mw-page-title-main">Hydrofluorocarbon</span> Synthetic organic compounds

Hydrofluorocarbons (HFCs) are synthetic organic compounds that contain fluorine and hydrogen atoms, and are the most common type of organofluorine compounds. Most are gases at room temperature and pressure. They are frequently used in air conditioning and as refrigerants; R-134a (1,1,1,2-tetrafluoroethane) is one of the most commonly used HFC refrigerants. In order to aid the recovery of the stratospheric ozone layer, HFCs were adopted to replace the more potent chlorofluorocarbons (CFCs), which were phased out from use by the Montreal Protocol, and hydrochlorofluorocarbons (HCFCs) which are presently being phased out. HFCs replaced older chlorofluorocarbons such as R-12 and hydrochlorofluorocarbons such as R-21. HFCs are also used in insulating foams, aerosol propellants, as solvents and for fire protection.

<span class="mw-page-title-main">Fluoromethane</span> Chemical compound

Fluoromethane, also known as methyl fluoride, Freon 41, Halocarbon-41 and HFC-41, is a non-toxic, liquefiable, and flammable gas at standard temperature and pressure. It is made of carbon, hydrogen, and fluorine. The name stems from the fact that it is methane (CH4) with a fluorine atom substituted for one of the hydrogen atoms. It is used in semiconductor manufacturing processes as an etching gas in plasma etch reactors.

<span class="mw-page-title-main">Infrared window</span> Atmospheric window

The infrared atmospheric window refers to a region of the infrared spectrum where there is relatively little absorption of terrestrial thermal radiation by atmospheric gases. The window plays an important role in the atmospheric greenhouse effect by maintaining the balance between incoming solar radiation and outgoing IR to space. In the Earth's atmosphere this window is roughly the region between 8 and 14 μm although it can be narrowed or closed at times and places of high humidity because of the strong absorption in the water vapor continuum or because of blocking by clouds. It covers a substantial part of the spectrum from surface thermal emission which starts at roughly 5 μm. Principally it is a large gap in the absorption spectrum of water vapor. Carbon dioxide plays an important role in setting the boundary at the long wavelength end. Ozone partly blocks transmission in the middle of the window.

Trichlorofluoromethane, also called freon-11, CFC-11, or R-11, is a chlorofluorocarbon (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature. CFC-11 is a Class 1 ozone-depleting substance which allegedly damages Earth's protective stratospheric ozone layer.

<span class="mw-page-title-main">Octafluoropropane</span> Chemical compound

Octafluoropropane (C3F8) is the perfluorocarbon counterpart to the hydrocarbon propane. This non-flammable and non-toxic synthetic substance has applications in semiconductor production and medicine. It is also an extremely potent greenhouse gas.

Fluoroform, or trifluoromethane, is the chemical compound with the formula CHF3. It is a hydrofluorocarbon as well as being apart of the haloforms, a class of compounds with the formula CHX3 with C3v symmetry. Fluoroform is used in diverse applications in organic synthesis. It is not an ozone depleter but is a greenhouse gas.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

Chlorotrifluoromethane, R-13, CFC-13, or Freon 13, is a non-flammable, non-corrosive, nontoxic chlorofluorocarbon (CFC) and also a mixed halomethane. It is a man-made substance used primarily as a refrigerant. When released into the environment, CFC-13 has a high ozone depletion potential, and long atmospheric lifetime. Only a few other greenhouse gases surpass CFC-13 in global warming potential (GWP). The IPCC AR5 reported that CFC-13's atmospheric lifetime was 640 years.

Carbonyl fluoride is a chemical compound with the formula COF2. It is a carbon oxohalide. This gas, like its analog phosgene, is colourless and highly toxic. The molecule is planar with C2v symmetry, bond lengths of 1.174 Å (C=O) and 1.312 Å (C–F), and an F–C–F bond angle of 108.0°.

Organofluorine chemistry describes the chemistry of organofluorine compounds, organic compounds that contain a carbon–fluorine bond. Organofluorine compounds find diverse applications ranging from oil and water repellents to pharmaceuticals, refrigerants, and reagents in catalysis. In addition to these applications, some organofluorine compounds are pollutants because of their contributions to ozone depletion, global warming, bioaccumulation, and toxicity. The area of organofluorine chemistry often requires special techniques associated with the handling of fluorinating agents.

<span class="mw-page-title-main">Carbon–fluorine bond</span> Covalent bond between carbon and fluorine atoms

The carbon–fluorine bond is a polar covalent bond between carbon and fluorine that is a component of all organofluorine compounds. It is one of the strongest single bonds in chemistry, and relatively short, due to its partial ionic character. The bond also strengthens and shortens as more fluorines are added to the same carbon on a chemical compound. As such, fluoroalkanes like tetrafluoromethane are some of the most unreactive organic compounds.

<span class="mw-page-title-main">Hexafluoroethane</span> Chemical compound

Hexafluoroethane is the perfluorocarbon counterpart to the hydrocarbon ethane. It is a non-flammable gas negligibly soluble in water and slightly soluble in methanol. It is an extremely potent and long-lived greenhouse gas.

<span class="mw-page-title-main">Fluorine</span> Chemical element, symbol F and atomic number 9

Fluorine is a chemical element; it has symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. Fluorine is extremely reactive, as it reacts with all other elements except for the light inert gases.

Electrochemical fluorination (ECF), or electrofluorination, is a foundational organofluorine chemistry method for the preparation of fluorocarbon-based organofluorine compounds. The general approach represents an application of electrosynthesis. The fluorinated chemical compounds produced by ECF are useful because of their distinctive solvation properties and the relative inertness of carbon–fluorine bonds. Two ECF synthesis routes are commercialized and commonly applied: the Simons process and the Phillips Petroleum process. It is also possible to electrofluorinate in various organic media. Prior to the development of these methods, fluorination with fluorine, a dangerous oxidizing agent, was a dangerous and wasteful process. ECF can be cost-effective, but it may also result in low yields.

Zyron is a registered trademark for specialty gases marketed to the global electronics industry by DuPont.

<span class="mw-page-title-main">Cyanogen fluoride</span> Chemical compound

Cyanogen fluoride is an inorganic linear compound which consists of a fluorine in a single bond with carbon, and a nitrogen in a triple bond with carbon. It is a toxic and explosive gas at room temperature. It is used in organic synthesis and can be produced by pyrolysis of cyanuric fluoride or by fluorination of cyanogen.

Fluorinated gases (F-gases) are a group of gases containing fluorine. They are divided into several types, the main of those are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6). They are used in refrigeration, air conditioning, heat pumps, fire suppression, electronics, aerospace, magnesium industry, foam and high voltage switchgear. As they are greenhouse gases with a strong global warming potential, their use is regulated.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

References

  1. Abjean, R.; A. Bideau-Mehu; Y. Guern (15 July 1990). "Refractive index of carbon tetrafluoride (CF4) in the 300-140 nm wavelength range". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 292 (3): 593–594. Bibcode:1990NIMPA.292..593A. doi:10.1016/0168-9002(90)90178-9.
  2. Kestin, J.; Ro, S.T.; Wakeham, W.A. (1971). "Reference values of the viscosity of twelve gases at 25°C". Transactions of the Faraday Society. 67: 2308–2313. doi:10.1039/TF9716702308.
  3. 1 2 Siegemund, Günter; Schwertfeger, Werner; Feiring, Andrew; Smart, Bruce; Behr, Fred; Vogel, Herward; McKusick, Blaine (2002). "Fluorine Compounds, Organic". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a11_349. ISBN   978-3527306732.
  4. O'Hagan D (February 2008). "Understanding organofluorine chemistry and in cations. An introduction to the C–F bond". Chemical Society Reviews. 37 (2): 308–19. doi:10.1039/b711844a. PMID   18197347.
  5. 1 2 Lemal, D.M. (2004). "Perspective on Fluorocarbon Chemistry". J. Org. Chem. 69 (1): 1–11. doi:10.1021/jo0302556. PMID   14703372.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  7. K. Williams, K. Gupta, M. Wasilik. Etch Rates for Micromachining Processing – Part II J. Microelectromech. Syst., vol. 12, pp. 761–777, December 2003.
  8. Moon, Myung-Kook; Nam, Uk-Won; Lee, Chang-Hee; Em, V.T.; Choi, Young-Hyun; Cheon, Jong-Kyu; Kong, Kyung-Nam (2005). "Low efficiency 2-dimensional position-sensitive neutron detector for beam profile measurement". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 538 (1–3): 592–596. Bibcode:2005NIMPA.538..592M. doi:10.1016/j.nima.2004.09.020.
  9. Artaxo, Paulo; Berntsen, Terje; Betts, Richard; Fahey, David W.; Haywood, James; Lean, Judith; Lowe, David C.; Myhre, Gunnar; Nganga, John; Prinn, Ronald; Raga, Graciela; Schulz, Michael; van Dorland, Robert (February 2018). "Changes in Atmospheric Constituents and in Radiative Forcing" (PDF). Intergovernmental Panel on Climate Change. p. 212. Retrieved 17 March 2021.
  10. "Climate change indicators - Atmospheric concentration of greenhouse gases - Figure 4". United States Environmental Protection Agency. 27 June 2016. Retrieved 2020-09-26.
  11. Butler J. and Montzka S. (2020). "The NOAA Annual Greenhouse Gas Index (AGGI)". NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  12. Cicerone, Ralph J. (1979-10-05). "Atmospheric Carbon Tetrafluoride: A Nearly Inert Gas" (PDF). Science. 206 (4414): 59–61. Bibcode:1979Sci...206...59C. doi:10.1126/science.206.4414.59. ISSN   0036-8075. PMID   17812452. S2CID   34911990.
  13. "Bond Energies". www2.chemistry.msu.edu. Retrieved 2023-01-15.
  14. Jubb, Aaron M.; McGillen, Max R.; Portmann, Robert W.; Daniel, John S.; Burkholder, James B. (2015). "An atmospheric photochemical source of the persistent greenhouse gas CF4". Geophysical Research Letters. 42 (21): 9505–9511. Bibcode:2015GeoRL..42.9505J. doi: 10.1002/2015GL066193 . ISSN   0094-8276.