Trihalomethane

Last updated

In chemistry, trihalomethanes (THMs) are chemical compounds in which three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Trihalomethanes with all the same halogen atoms are called haloforms. Many trihalomethanes find uses in industry as solvents or refrigerants. Some THMs are also environmental pollutants, and few are considered carcinogenic.

Contents

Table of common trihalomethanes

Common trihalomethanes (ordered by molecular weight)
Molecular

formula

IUPAC name CAS registry number Common nameOther namesMolecule
CHF3trifluoromethane75-46-7 fluoroform Freon 23, R-23, HFC-23 Fluoroform-3D-vdW.png
CHClF2chlorodifluoromethane75-45-6 chlorodifluoromethane R-22, HCFC-22 Chlorodifluoromethane-3D-vdW.png
CHCl3trichloromethane67-66-3 chloroform R-20, methyl trichloride Chloroform-3D-vdW.png
CHBrCl2bromodichloromethane75-27-4 bromodichloromethane dichlorobromomethane, BDCM Bromodichloromethane-3D-vdW.png
CHBr2Cldibromochloromethane124-48-1 dibromochloromethane chlorodibromomethane, CDBM Dibromochloromethane-3D-vdW.png
CHBr3tribromomethane75-25-2 bromoform methyl tribromide Bromoform-3D-vdW.png
CHI3triiodomethane75-47-8 iodoform methyl triiodide Iodoform-3D-vdW.png

Industrial uses

Only chloroform has significant applications of the haloforms. In the predominant application, chloroform is required for the production of tetrafluoroethylene (TFE), precursor to teflon. [1] Chloroform is fluorinated by reaction with hydrogen fluoride to produce chlorodifluoromethane (R-22). Pyrolysis of chlorodifluoromethane (at 550-750 °C) yields TFE, with difluorocarbene as an intermediate.

Refrigerants and solvents

Trihalomethanes released to the environment break down faster than chlorofluorocarbons (CFCs), thereby doing much less damage to the ozone layer. Trifluoromethane and chlorodifluoromethane are both used as refrigerants. Chlorodifluoromethane is a refrigerant HCFC, or hydrochlorofluorocarbon, while fluoroform is an HFC, or hydrofluorocarbon. Fluoroform is not ozone depleting.

Chloroform is a common solvent in organic chemistry.

Occurrence and production

The total global flux of chloroform through the environment is approximately 660000 tonnes per year, [2] and about 90% of emissions are natural in origin. Many kinds of seaweed produce chloroform, and fungi are believed to produce chloroform in soil. [3]

Most of the haloformsspecifically, chloroform (CHCl3), bromoform (CHBr3), and iodoform (CHI3)are easy to prepare through the haloform reaction, although this method does not lend itself to bulk syntheses. (Fluoroform (CHF3) cannot be prepared in this manner.)

Chloroform is produced by heating mixtures of methane or methyl chloride with chlorine. Dichloromethane is a coproduct. [4]

Bromochlorofluoromethane is one of the simplest possible stable chiral compounds, and is used for studies.

Regulation

Trihalomethanes were the subject of the first drinking water regulations issued after passage of the U.S. Safe Drinking Water Act in 1974. [5]

The EPA limits the total concentration of the four chief constituents (chloroform, bromoform, bromodichloromethane, and dibromochloromethane), referred to as total trihalomethanes (TTHM), to 80 parts per billion in treated water. [6]

Traces of chloroform are produced in swimming pools. [7] [8] [9] [10]

Related Research Articles

<span class="mw-page-title-main">Chlorofluorocarbon</span> Class of organic compounds commonly used as refrigerants

Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.

<span class="mw-page-title-main">Haloalkane</span> Group of chemical compounds derived from alkanes containing one or more halogens

The haloalkanes are alkanes containing one or more halogen substituents. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula "RX" where R is an alkyl or substituted alkyl group and X is a halogen.

Chloroform, or trichloromethane, is an organic compound with the formula CHCl3 and a common solvent. It is a very volatile, colorless, strong-smelling, dense liquid produced on a large scale as a precursor to refrigerants and PTFE. Chloroform is a trihalomethane that serves as a powerful anesthetic, euphoriant, anxiolytic, and sedative when inhaled or ingested. Chloroform was used as an anesthetic between the 19th century and the first half of the 20th century. It is miscible with many solvents but it is only very slightly soluble in water.

<span class="mw-page-title-main">Carbon tetrachloride</span> Chemical compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC) is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

<span class="mw-page-title-main">Dichloromethane</span> Chemical compound

Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.

Chloromethane, also called methyl chloride, Refrigerant-40, R-40 or HCC 40, is an organic compound with the chemical formula CH3Cl. One of the haloalkanes, it is a colorless, sweet-smelling, flammable gas. Methyl chloride is a crucial reagent in industrial chemistry, although it is rarely present in consumer products, and was formerly utilized as a refrigerant. Most chloromethane is biogenic.

<span class="mw-page-title-main">1,1,1-Trichloroethane</span> Solvent, now banned for ozone depletion

The organic compound 1,1,1-trichloroethane, also known as methyl chloroform and chlorothene, is a chloroalkane with the chemical formula CH3CCl3. It is an isomer of 1,1,2-trichloroethane. This colorless, sweet-smelling liquid was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and its use is being rapidly phased out.

<span class="mw-page-title-main">Halomethane</span> Halogen compounds derived from methane

Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.

Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds containing at least one covalently bonded atom of chlorine. The chloroalkane class includes common examples. The wide structural variety and divergent chemical properties of organochlorides lead to a broad range of names, applications, and properties. Organochlorine compounds have wide use in many applications, though some are of profound environmental concern, with TCDD being one of the most notorious.

<span class="mw-page-title-main">Bromoform</span> Chemical compound

Bromoform is an organic compound with the chemical formula CHBr3. It is a colorless liquid at room temperature, with a high refractive index and a very high density. Its sweet odor is similar to that of chloroform. It is one of the four haloforms, the others being fluoroform, chloroform, and iodoform. It is a brominated organic solvent. Currently its main use is as a laboratory reagent. It is very slightly soluble in water and is miscible with alcohol, benzene, chloroform, ether, petroleum ether, acetone and oils.

<span class="mw-page-title-main">Chlorodifluoromethane</span> Chemical propellant and refrigerant

Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon (HCFC). This colorless gas is better known as HCFC-22, or R-22, or CHClF
2
. It was commonly used as a propellant and refrigerant. These applications were phased out under the Montreal Protocol in developed countries in 2020 due to the compound's ozone depletion potential (ODP) and high global warming potential (GWP), and in developing countries this process will be completed by 2030. R-22 is a versatile intermediate in industrial organofluorine chemistry, e.g. as a precursor to tetrafluoroethylene.

Fluoroform, or trifluoromethane, is the chemical compound with the formula CHF3. It is a hydrofluorocarbon as well as being apart of the haloforms, a class of compounds with the formula CHX3 with C3v symmetry. Fluoroform is used in diverse applications in organic synthesis. It is not an ozone depleter but is a greenhouse gas.

Tetrafluoroethylene (TFE) is a fluorocarbon with the chemical formula C2F4. It is the simplest perfluorinated alkene. This gaseous species is used primarily in the industrial preparation of fluoropolymers.

<span class="mw-page-title-main">Hydrogen fluoride</span> Chemical compound

Hydrogen fluoride (fluorane) is an inorganic compound with chemical formula HF. It is a very poisonous, colorless gas or liquid that dissolves in water to yield an aqueous solution termed hydrofluoric acid. It is the principal industrial source of fluorine, often in the form of hydrofluoric acid, and is an important feedstock in the preparation of many important compounds including pharmaceuticals and polymers, e.g. polytetrafluoroethylene (PTFE). HF is also widely used in the petrochemical industry as a component of superacids. Due to strong and extensive hydrogen bonding, it boils at near room temperature, much higher than other hydrogen halides.

Salt water chlorination is a process that uses dissolved salt for the chlorination of swimming pools and hot tubs. The chlorine generator uses electrolysis in the presence of dissolved salt to produce chlorine gas or its dissolved forms, hypochlorous acid and sodium hypochlorite, which are already commonly used as sanitizing agents in pools. Hydrogen is produced as byproduct too.

Monochloramine, often called chloramine, is the chemical compound with the formula NH2Cl. Together with dichloramine (NHCl2) and nitrogen trichloride (NCl3), it is one of the three chloramines of ammonia. It is a colorless liquid at its melting point of −66 °C (−87 °F), but it is usually handled as a dilute aqueous solution, in which form it is sometimes used as a disinfectant. Chloramine is too unstable to have its boiling point measured.

In chemistry, a reaction intermediate, or intermediate, is a molecular entity arising within the sequence of a stepwise chemical reaction. It is formed as the reaction product of an elementary step, from the reactants and/or preceding intermediates, but is consumed in a later step. It does not appear in the chemical equation for the overall reaction.

Disinfection by-products (DBPs) are organic and inorganic compounds resulting from chemical reactions between organic and inorganic substances such as contaminates and chemical treatment disinfection agents, respectively, in water during water disinfection processes.

<span class="mw-page-title-main">Haloform reaction</span> Chemical reaction involving repeated halogenation of an acetyl group (–COCH3)

In chemistry, the haloform reaction is a chemical reaction in which a haloform is produced by the exhaustive halogenation of an acetyl group, in the presence of a base. The reaction can be used to transform acetyl groups into carboxyl groups or to produce chloroform, bromoform, or iodoform. Note that fluoroform can't be prepared in this way.

<span class="mw-page-title-main">Water chlorination</span> Chorination of water

Water chlorination is the process of adding chlorine or chlorine compounds such as sodium hypochlorite to water. This method is used to kill bacteria, viruses and other microbes in water. In particular, chlorination is used to prevent the spread of waterborne diseases such as cholera, dysentery, and typhoid.

References

  1. Dae Jin Sung; Dong Ju Moon; Yong Jun Lee; Suk-In Hong (2004). "Catalytic Pyrolysis of Difluorochloromethane to Produce Tetrafluoroethylene". International Journal of Chemical Reactor Engineering. 2: A6. doi:10.2202/1542-6580.1065. S2CID   97895482.
  2. Gribble, Gordon W. (2004). "Natural Organohalogens: A New Frontier for Medicinal Agents?". Journal of Chemical Education. 81 (10): 1441. Bibcode:2004JChEd..81.1441G. doi:10.1021/ed081p1441.
  3. Cappelletti, M. (2012). "Microbial degradation of chloroform". Applied Microbiology and Biotechnology. 96 (6): 1395–409. doi:10.1007/s00253-012-4494-1. PMID   23093177. S2CID   12429523.
  4. Rossberg, Manfred; Lendle, Wilhelm; Pfleiderer, Gerhard; Tögel, Adolf; Dreher, Eberhard-Ludwig; Langer, Ernst; Rassaerts, Heinz; Kleinschmidt, Peter; Strack, Heinz; Cook, Richard; Beck, Uwe; Lipper, Karl-August; Torkelson, Theodore R.; Löser, Eckhard; Beutel, Klaus K.; Mann, Trevor (2006). "Chlorinated Hydrocarbons". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a06_233.pub2. ISBN   3527306730.
  5. EPA Alumni Association: Senior EPA officials discuss early implementation of the Safe Drinking Water Act of 1974, Video, Transcript (see pages 12-13).
  6. "EPA | Envirofacts | ICR | Regulations". archive.epa.gov. Retrieved 2021-10-11.
  7. Lindstrom, A B; Pleil, J.D.; Berkoff, D.C. (1997). "Alveolar breath sampling and analysis to assess trihalomethane exposures during competitive swimming training". Environmental Health Perspectives. 105 (6): 636–642. doi:10.1289/ehp.97105636. ISSN   0091-6765. PMC   1470079 . PMID   9288498.
  8. Drobnic, Franchek; Freixa, Assumpci??; Casan, Pere; Sanchis, Joaqu??N; Guardino, Xavier (1996). "Assessment of chlorine exposure in swimmers during training". Medicine & Science in Sports & Exercise. 28 (2): 271–274. doi: 10.1097/00005768-199602000-00018 . ISSN   0195-9131. PMID   8775165.
  9. Aiking, Harry; van Ackert, Manila B.; Schölten, Rob J.P.M.; Feenstra, Jan F.; Valkenburg, Hans A. (1994). "Swimming pool chlorination: a health hazard?". Toxicology Letters . 72 (1–3): 375–380. doi:10.1016/0378-4274(94)90051-5. ISSN   0378-4274. PMID   7911264.
  10. Nickmilder, M.; Bernard, A. (2011). "Associations between testicular hormones at adolescence and attendance at chlorinated swimming pools during childhood". International Journal of Andrology. 34 (5pt2): e446–e458. doi:10.1111/j.1365-2605.2011.01174.x. ISSN   0105-6263. PMC   3229674 . PMID   21631527.