Bromochloromethane

Last updated
Bromochloromethane
Bromochloromethane.svg
Bromochloromethane-3D-sf.png
Names
Preferred IUPAC name
Bromo(chloro)methane
Other names
  • Bromochloromethane
  • Borothene[ citation needed ]
  • Chloromethyl bromide
  • Halon 1011 [1]
  • Methylene bromochloride
  • Methyl chlorobromide [1]
  • Monochloromonobromomethane
  • Chlorobromomethane [1]
  • Fluorocarbon 1011 [1]
Identifiers
3D model (JSmol)
3DMet
Abbreviations
1730801
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.752 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 200-826-3
25577
KEGG
MeSH bromochloromethane
PubChem CID
RTECS number
  • PA5250000
UNII
UN number 1887
  • InChI=1S/CH2BrCl/c2-1-3/h1H2 Yes check.svgY
    Key: JPOXNPPZZKNXOV-UHFFFAOYSA-N Yes check.svgY
  • ClCBr
Properties
CH2BrCl
Molar mass 129.38 g·mol−1
AppearanceColorless liquid
Odor Chloroform-like [1]
Density 1.991 g·mL−1
Melting point −88.0 °C; −126.3 °F; 185.2 K
Boiling point 68 °C; 154 °F; 341 K
16.7 g·L−1
log P 1.55
Vapor pressure 15.60 kPa (at 20.0 °C)
−86.88·10−6·cm3/mol
1.482
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H315, H318, H332, H335
P261, P280, P305+P351+P338
Flash point Non-combustible [1]
Lethal dose or concentration (LD, LC):
  • 5 g·mol−1 (oral, rat)
  • 20 g·kg−1 (dermal, rabbit)
  • 4300 mg·kg−1 (oral, mouse) [2]
3000 ppm (mouse, 7 hr) [2]
  • 28,800 ppm (rat, 15 min)
  • 29,000 ppm (rat, 15 min)
  • 27,000 ppm (mouse, 15 min) [2]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 200 ppm (1050 mg/m3) [1]
REL (Recommended)
TWA 200 ppm (1050 mg/m3) [1]
IDLH (Immediate danger)
2000 ppm [1]
Related compounds
Related alkanes
Related compounds
2-Chloroethanol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Bromochloromethane or methylene bromochloride and Halon 1011 is a mixed halomethane. It is a heavy low-viscosity liquid with refractive index 1.4808.

Contents

Halon 1011 was invented for use in fire extinguishers in Germany during the mid-1940s, in an attempt to create a less toxic, more effective alternative to carbon tetrachloride. This was a concern in aircraft and tanks as carbon tetrachloride produced highly toxic by-products when discharged onto a fire. It was slightly less toxic, and used up until the late 1960s, being officially banned by the NFPA for use in fire extinguishers in 1969, as safer and more effective agents such as halon 1211 and 1301 were developed. Due to its ozone depletion potential its production was banned from January 1, 2002, at the Eleventh Meeting of the Parties for the Montreal Protocol on Substances that Deplete the Ozone Layer.

A 1950s US CBM fire extinguisher. Aircraft A-20 CBM.jpg
A 1950s US CBM fire extinguisher.
Pyrene 1qt. pump-type chlorobromomethane (CB or CBM), 1960s, UK Pyrene 1qt. pump-type chlorobromomethane.jpg
Pyrene 1qt. pump-type chlorobromomethane (CB or CBM), 1960s, UK

Bromochloromethane's biodegradation is catalyzed by the hydrolase enzyme alkylhalidase:

CH2BrCl + H2O → CH2O + HBr + HCl

Preparation

Bromochloromethane is prepared commercially from dichloromethane:

6 CH2Cl2 + 3 Br2 + 2 Al → 6 CH2BrCl + 2 AlCl3
CH2Cl2 + HBr → CH2BrCl + HCl

The latter route requires aluminium trichloride as a catalyst. The bromochloromethane is often used as a precursor to methylene bromide. [3]

Related Research Articles

<span class="mw-page-title-main">Phosgene</span> Toxic gaseous compound (COCl2)

Phosgene is an organic chemical compound with the formula COCl2. It is a toxic, colorless gas; in low concentrations, its musty odor resembles that of freshly cut hay or grass. It can be thought of chemically as the double acyl chloride analog of carbonic acid, or structurally as formaldehyde with the hydrogen atoms replaced by chlorine atoms. Phosgene is a valued and important industrial building block, especially for the production of precursors of polyurethanes and polycarbonate plastics.

<span class="mw-page-title-main">Carbon tetrachloride</span> Carbon compound

Carbon tetrachloride, also known by many other names (such as carbon tet for short and tetrachloromethane, also recognised by the IUPAC), is a chemical compound with the chemical formula CCl4. It is a non-flammable, dense, colourless liquid with a "sweet" chloroform-like odour that can be detected at low levels. It was formerly widely used in fire extinguishers, as a precursor to refrigerants and as a cleaning agent, but has since been phased out because of environmental and safety concerns. Exposure to high concentrations of carbon tetrachloride can affect the central nervous system and degenerate the liver and kidneys. Prolonged exposure can be fatal.

Bromomethane, commonly known as methyl bromide, is an organobromine compound with formula CH3Br. This colorless, odorless, nonflammable gas is produced both industrially and biologically. It is a recognized ozone-depleting chemical. It was used extensively as a pesticide until being phased out by most countries in the early 2000s. From a chemistry perspective, it is one of the halomethanes.

Bromotrifluoromethane, commonly referred to by the code numbers Halon 1301, R13B1, Halon 13B1 or BTM, is an organic halide with the chemical formula CBrF3. It is used for gaseous fire suppression as a far less toxic alternative to bromochloromethane.

<span class="mw-page-title-main">Dichloromethane</span> Chemical compound

Dichloromethane is an organochlorine compound with the formula CH2Cl2. This colorless, volatile liquid with a chloroform-like, sweet odor is widely used as a solvent. Although it is not miscible with water, it is slightly polar, and miscible with many organic solvents.

Chloromethane, also called methyl chloride, Refrigerant-40, R-40 or HCC 40, is an organic compound with the chemical formula CH3Cl. One of the haloalkanes, it is a colorless, sweet-smelling, flammable gas. Methyl chloride is a crucial reagent in industrial chemistry, although it is rarely present in consumer products, and was formerly utilized as a refrigerant. Most chloromethane is biogenic.

<span class="mw-page-title-main">1,1,1-Trichloroethane</span> Solvent, now banned for ozone depletion

The organic compound 1,1,1-trichloroethane, also known as methyl chloroform and chlorothene, is a chloroalkane with the chemical formula CH3CCl3. It is an isomer of 1,1,2-trichloroethane. A colourless and sweet-smelling liquid, it was once produced industrially in large quantities for use as a solvent. It is regulated by the Montreal Protocol as an ozone-depleting substance and as such use has declined since 1996. Trichloroethane should not be confused with the similar-sounding trichloroethene which is also commonly used as a solvent.

<span class="mw-page-title-main">Halomethane</span> Halogen compounds derived from methane

Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C (255.7 °F). Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

Trichlorofluoromethane, also called freon-11, CFC-11, or R-11, is a chlorofluorocarbon (CFC). It is a colorless, faintly ethereal, and sweetish-smelling liquid that boils around room temperature. CFC-11 is a Class 1 ozone-depleting substance which damages Earth's protective stratospheric ozone layer. Also R-11 is not flammable at ambient temperature and pressure but it can become very combustible if heated and ignited by a strong ignition source.

<span class="mw-page-title-main">Carbon tetrabromide</span> Chemical compound

Carbon tetrabromide, CBr4, also known as tetrabromomethane, is a bromide of carbon. Both names are acceptable under IUPAC nomenclature.

Bromoethane, also known as ethyl bromide, is a chemical compound of the haloalkanes group. It is abbreviated by chemists as EtBr. This volatile compound has an ether-like odor.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

1,1-Dichloroethane is a chlorinated hydrocarbon. It is a colorless oily liquid with a chloroform-like odor. It is not easily soluble in water, but miscible with most organic solvents.

1,2-Dichlorotetrafluoroethane, or R-114, also known as cryofluorane (INN), is a chlorofluorocarbon (CFC) with the molecular formula ClF2CCF2Cl. Its primary use has been as a refrigerant. It is a non-flammable gas with a sweetish, chloroform-like odor with the critical point occurring at 145.6 °C and 3.26 MPa. When pressurized or cooled, it is a colorless liquid. It is listed on the Intergovernmental Panel on Climate Change's list of ozone depleting chemicals, and is classified as a Montreal Protocol Class I, group 1 ozone depleting substance.

<span class="mw-page-title-main">Dichlorofluoromethane</span> Chemical compound

Dichlorofluoromethane or Freon 21 or R 21 is a halomethane or hydrochlorofluorocarbon with the formula CHCl2F. It is a colorless and odorless gas. It is produced by fluorination of chloroform using a catalyst such as antimony trifluoride:

<span class="mw-page-title-main">Dibromodifluoromethane</span> Chemical compound

Dibromodifluoromethane is a mixed halomethane. It is a colorless non-flammable liquid. Along with Halons 1211, 2402, and 1301, it is one of the most effective fire extinguishers, however, it is also very toxic. It is a class I ozone depleting substance (ODS).

<span class="mw-page-title-main">Vinyl bromide</span> Chemical compound

Vinyl bromide is the organobromine compound with the formula CH2=CHBr. Classified as a vinyl halide, it is a colorless gas at room temperature. It is used as a reagent and a comonomer.

<span class="mw-page-title-main">Hexachlorobutadiene</span> Chemical compound

Hexachlorobutadiene, (often abbreviated as "HCBD") Cl2C=C(Cl)C(Cl)=CCl2, is a colorless liquid at room temperature that has an odor similar to that of turpentine. It is a chlorinated aliphatic diene with niche applications but is most commonly used as a solvent for other chlorine-containing compounds. Structurally, it has a 1,3-butadiene core, but fully substituted with chlorine atoms.

<span class="mw-page-title-main">Perchloromethyl mercaptan</span> Chemical compound

Perchloromethyl mercaptan is the organosulfur compound with the formula CCl3SCl. It is mainly used as an intermediate for the synthesis of dyes and fungicides (captan, folpet). It is a colorless oil, although commercial samples are yellowish. It is insoluble in water but soluble in organic solvents. It has a foul, unbearable, acrid odor. Perchloromethyl mercaptan is the original name. The systematic name is trichloromethanesulfenyl chloride, because the compound is a sulfenyl chloride, not a mercaptan.

References

  1. 1 2 3 4 5 6 7 8 9 10 NIOSH Pocket Guide to Chemical Hazards. "#0123". National Institute for Occupational Safety and Health (NIOSH).
  2. 1 2 3 "Chlorobromomethane". Immediately Dangerous to Life or Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  3. Dagani, M. J.; Barda, H. J.; Benya, T. J.; Sanders, D. C. "Bromine Compounds". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a04_405. ISBN   978-3527306732.