Names | |||
---|---|---|---|
Preferred IUPAC name Bromotri(fluoro)methane | |||
Other names
| |||
Identifiers | |||
3D model (JSmol) | |||
ChemSpider | |||
ECHA InfoCard | 100.000.807 | ||
EC Number |
| ||
PubChem CID | |||
RTECS number |
| ||
UNII | |||
UN number | 1009 | ||
CompTox Dashboard (EPA) | |||
| |||
| |||
Properties | |||
CBrF3 | |||
Molar mass | 148.910 g·mol−1 | ||
Appearance | Colorless gas | ||
Odor | Odorless [1] | ||
Density | 1.538 g/cm3 (at −58 °C (−72 °F)) | ||
Melting point | −167.78 °C (−270.00 °F; 105.37 K) | ||
Boiling point | −57.75 °C (−71.95 °F; 215.40 K) | ||
0.03 g/L (20 °C (68 °F)) | |||
log P | 1.86 | ||
Vapor pressure | 1434 kPa (20 °C (68 °F)) | ||
Hazards | |||
Flash point | Non-flammable | ||
Lethal dose or concentration (LD, LC): | |||
LCLo (lowest published) | 834,000 ppm (rat, 15 min) [2] | ||
NIOSH (US health exposure limits): | |||
PEL (Permissible) | TWA 1000 ppm (6100 mg/m3) [1] | ||
REL (Recommended) | TWA 1000 ppm (6100 mg/m3) [1] | ||
IDLH (Immediate danger) | 40,000 ppm [1] | ||
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Bromotrifluoromethane, commonly referred to by the code numbers Halon 1301, R13B1, Halon 13B1 or BTM, is an organic halide with the chemical formula C Br F 3. It is used for gaseous fire suppression as a far less toxic alternative to bromochloromethane. [3]
Property | Value |
---|---|
Critical temperature (Tc) | 66.9 °C (340.08 K) |
Critical pressure (pc) | 3.956 MPa (39.56 bar) |
Critical density (ρc) | 5.13 mol.l−1 |
Ozone depletion potential (ODP) | 10 (CCl3F = 1) |
Global warming potential (GWP) | 6900 (CO2 = 1) |
Bromotrifluoromethane is commercially synthesized in a two-step process from chloroform. Chloroform is fluorinated with hydrogen fluoride. [4]
CHCl3 + 3 HF → CHF3 + 3 HCl
The resulting Fluoroform is then reacted with elemental bromine.
CHF3 + Br2 → CF3Br + HBr
Halon 1301 was developed in a joint venture between the U.S. Army and Purdue University in the late 1940's, [5] and became a DuPont product in 1954. It was introduced as an effective gaseous fire suppression fixed systems agent in the 1960s, and was used around valuable materials, such as aircraft, mainframe computers, and telecommunication switching centers, usually in total flooding systems. [6] It was also widely used in the maritime industry to add a third level of protection should the main and emergency fire pumps become inoperable or ineffective. Halon 1301 was never widely used in portables outside marine, military and spacecraft applications, due to its limited range, and invisible discharge. It does not produce the characteristic white cloud like CO2 and is difficult to direct when fighting large fires. Halon 1301 is ideal for armored vehicles and spacecraft, because it produces fewer toxic by-products than does Halon 1211, which is critical for combat or space conditions where a compartment may not be able to be ventilated immediately. Halon 1301 is widely used by the U.S. Military [7] and NASA in a 2-3/4 lb portable extinguisher with a sealed, disposable cylinder for quick recharging. Other agents such as CO2 and FE-36 (HFC-236fa) wet chemical are largely replacing halon 1301 for environmental concerns. Civilian models in 2-3/4, 3, and 4 lb sizes were also made.
It is considered good practice to avoid all unnecessary exposure to Halon 1301, and to limit exposures to concentrations of 7% and below to 15 minutes. Exposure to Halon 1301 in the 5% to 7% range produces little, if any, noticeable effect. At levels between 7% and 10%, mild central nervous system effects such as dizziness and tingling in the extremities have been reported. [8] In practice, the operators of many Halon 1301 total flooding systems evacuate the space on impending agent discharge.
Halon systems are among the most effective and commonly used fire protection systems used on commercial aircraft. Halon 1301 is the primary agent used in commercial aviation engine, cargo compartments, and auxiliary power unit fire zones. [9] [10] Efforts to find a suitable replacement for Halon 1301 have not produced a widely accepted replacement. [11] [12]
Bromotrifluoromethane was also used as a filling of the bubble chamber in the neutrino detector Gargamelle.
Before the dangers of Halon 1301 as an ozone depleter were known, many industrial chillers used it as an efficient refrigerant gas. [13]
It is a precursor to trifluoromethyltrimethylsilane, a popular trifluoromethylating reagent in organic synthesis. [14]
Alternatives for normally occupied areas include (PFC-410 or CEA-410), C3F8 (PFC-218 or CEA-308), HCFC Blend A (NAF S-III), HFC-23 (FE 13), HFC-227ea (FM 200), IG-01 (argon), IG-55 (argonite), HFC-125, or HFC-134a. For normally unoccupied areas, the alternatives include carbon dioxide, powdered Aerosol C, CF3I, HCFC-22, HCFC-124, HFC-125, HFC-134a, gelled halocarbon/dry chemical suspension (PGA), blend of inert gas, high expansion foam systems and powdered aerosol (FS 0140), and IG-541 (Inergen). [15] Perfluorocarbons, i.e., PFCs such as C3F8, have very long atmospheric lifetimes and very high global warming potentials. Hydrochlorofluorocarbons, i.e., HCFCs including HCFC containing NAF S-III, contain chlorine and are stratospheric ozone layer depleters, although less so than Halon 1301. Their selection for usage as Halon replacements should consider those factors, and is restricted in some countries.
The Montreal Protocol on Substances That Deplete the Ozone Layer is an international treaty designed to protect the ozone layer by phasing out the production of numerous substances that are responsible for ozone depletion. It was agreed on 16 September 1987, and entered into force on 1 January 1989. Since then, it has undergone nine revisions, in 1990 (London), 1991 (Nairobi), 1992 (Copenhagen), 1993 (Bangkok), 1995 (Vienna), 1997 (Montreal), 1999 (Beijing) and 2016 (Kigali). As a result of the international agreement, the ozone hole in Antarctica is slowly recovering. Climate projections indicate that the ozone layer will return to 1980 levels between 2040 and 2066. Due to its widespread adoption and implementation, it has been hailed as an example of successful international co-operation. Former UN Secretary-General Kofi Annan stated that "perhaps the single most successful international agreement to date has been the Montreal Protocol". In comparison, effective burden-sharing and solution proposals mitigating regional conflicts of interest have been among the success factors for the ozone depletion challenge, where global regulation based on the Kyoto Protocol has failed to do so. In this case of the ozone depletion challenge, there was global regulation already being installed before a scientific consensus was established. Also, overall public opinion was convinced of possible imminent risks.
Chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs) are fully or partly halogenated hydrocarbons that contain carbon (C), hydrogen (H), chlorine (Cl), and fluorine (F), produced as volatile derivatives of methane, ethane, and propane.
Isobutane, also known as i-butane, 2-methylpropane or methylpropane,is a chemical compound with molecular formula HC(CH3)3. It is an isomer of butane. Isobutane is a colorless, odorless gas. It is the simplest alkane with a tertiary carbon atom. Isobutane is used as a precursor molecule in the petrochemical industry, for example in the synthesis of isooctane.
Bromochlorodifluoromethane (BCF), also referred to by the code numbers Halon 1211 and Freon 12B1, is a haloalkane with the chemical formula CF2ClBr. It is used for fire suppression, especially for expensive equipment or items that could be damaged by the residue from other types of extinguishers. It is stored as a liquid under pressure and vaporizes when discharged to suppress fires. The use of halons, including Halon 1211, has decreased over time due to their adverse impact on the ozone layer. Alternatives have been developed to mitigate environmental concerns while still providing effective fire suppression capabilities.
A refrigerant is a working fluid used in the refrigeration cycle of air conditioning systems and heat pumps where in most cases they undergo a repeated phase transition from a liquid to a gas and back again. Refrigerants are heavily regulated because of their toxicity and flammability and the contribution of CFC and HCFC refrigerants to ozone depletion and that of HFC refrigerants to climate change.
Halomethane compounds are derivatives of methane with one or more of the hydrogen atoms replaced with halogen atoms. Halomethanes are both naturally occurring, especially in marine environments, and human-made, most notably as refrigerants, solvents, propellants, and fumigants. Many, including the chlorofluorocarbons, have attracted wide attention because they become active when exposed to ultraviolet light found at high altitudes and destroy the Earth's protective ozone layer.
Methyl formate, also called methyl methanoate, is the methyl ester of formic acid. The simplest example of a carboxylate ester, it is a colorless liquid with an ethereal odour, high vapor pressure, and low surface tension. It is a precursor to many other compounds of commercial interest.
Dichlorodifluoromethane (R-12) is a colorless gas usually sold under the brand name Freon-12, and a chlorofluorocarbon halomethane (CFC) used as a refrigerant and aerosol spray propellant. In compliance with the Montreal Protocol, its manufacture was banned in developed countries in 1996, and in developing countries in 2010 out of concerns about its damaging effect on the ozone layer. Its only allowed usage is as a fire retardant in submarines and aircraft. It is soluble in many organic solvents. R-12 cylinders are colored white.
1,1,1,2-Tetrafluoroethane (also known as norflurane (INN), R-134a, Klea 134a, Freon 134a, Forane 134a, Genetron 134a, Green Gas, Florasol 134a, Suva 134a, HFA-134a, or HFC-134a) is a hydrofluorocarbon (HFC) and haloalkane refrigerant with thermodynamic properties similar to R-12 (dichlorodifluoromethane) but with insignificant ozone depletion potential and a lower 100-year global warming potential (1,430, compared to R-12's GWP of 10,900). It has the formula CF3CH2F and a boiling point of −26.3 °C (−15.34 °F) at atmospheric pressure. R-134a cylinders are colored light blue. A phaseout and transition to HFO-1234yf and other refrigerants, with GWPs similar to CO2, began in 2012 within the automotive market.
Gaseous fire suppression, also called clean agent fire suppression, is the use of inert gases and chemical agents to extinguish a fire. These agents are governed by the National Fire Protection Association (NFPA) Standard for Clean Agent Fire Extinguishing Systems – NFPA 2001 in the US, with different standards and regulations elsewhere. The system typically consists of the agent, agent storage containers, agent release valves, fire detectors, fire detection system, agent delivery piping, and agent dispersion nozzles.
Chlorodifluoromethane or difluoromonochloromethane is a hydrochlorofluorocarbon (HCFC). This colorless gas is better known as HCFC-22, or R-22, or CHClF
2. It was commonly used as a propellant and refrigerant. These applications were phased out under the Montreal Protocol in developed countries in 2020 due to the compound's ozone depletion potential (ODP) and high global warming potential (GWP), and in developing countries this process will be completed by 2030. R-22 is a versatile intermediate in industrial organofluorine chemistry, e.g. as a precursor to tetrafluoroethylene.
Fluoroform, or trifluoromethane, is the chemical compound with the formula CHF3. It is a hydrofluorocarbon as well as being a part of the haloforms, a class of compounds with the formula CHX3 with C3v symmetry. Fluoroform is used in diverse applications in organic synthesis. It is not an ozone depleter but is a greenhouse gas.
1,1,1,2,3,3,3-Heptafluoropropane, also called heptafluoropropane, HFC-227ea, HFC-227 or FM-200, as well as apaflurane (INN), is a colourless, odourless gaseous halocarbon commonly used as a gaseous fire suppression agent.
Bromochloromethane or methylene bromochloride and Halon 1011 is a mixed halomethane. It is a heavy low-viscosity liquid with refractive index 1.4808.
A fire extinguisher is a handheld active fire protection device usually filled with a dry or wet chemical used to extinguish or control small fires, often in emergencies. It is not intended for use on an out-of-control fire, such as one which has reached the ceiling, endangers the user, or otherwise requires the equipment, personnel, resources or expertise of a fire brigade. Typically, a fire extinguisher consists of a hand-held cylindrical pressure vessel containing an agent that can be discharged to extinguish a fire. Fire extinguishers manufactured with non-cylindrical pressure vessels also exist but are less common.
Automatic fire suppression systems control and extinguish fires without human intervention. Examples of automatic systems include fire sprinkler system, gaseous fire suppression, and condensed aerosol fire suppression. When fires are extinguished in the early stages loss of life is minimal since 93% of all fire-related deaths occur once the fire has progressed beyond the early stages.
HC-12a, also called ES-12a, OZ-12a, DURACOOL 12a and Hydrocarbon Blend B, is a "drop-in" replacement refrigerant for Freon-12 and to a lesser extent, R-134a. HC-12a is a mixture of hydrocarbons, specifically propane (R-290) and isobutane (R-600a), and is therefore considered nearly non-ozone-depleting compared to dichlorodifluoromethane or 1,1,1,2-tetrafluoroethane (R-134a). The mixture can be used in refrigeration systems designed for R-12. HC-12a provides better cooling than an R-12 system retrofitted to R-134a, with much greater energy efficiency as well. Unlike R-134a, HC-12a is completely compatible with the hoses and oils used in R-12 systems, making the conversion much easier to accomplish. HC-12a is also patent-free due to its non-synthetic nature.
Pentafluoroethane is a fluorocarbon with the formula CF3CHF2. Pentafluoroethane is currently used as a refrigerant (known as R-125) and also used as a fire suppression agent in fire suppression systems.
trans-1,3,3,3-Tetrafluoropropene (HFO-1234ze(E), R-1234ze(E)) is a hydrofluoroolefin. It was developed as a "fourth generation" refrigerant to replace fluids such as R-134a, as a blowing agent for foam and aerosol applications, and in air horns and gas dusters. The use of R-134a is being phased out because of its high global warming potential (GWP). HFO-1234ze(E) itself has zero ozone-depletion potential (ODP=0), a very low global warming potential (GWP < 1 ), even lower than CO2, and it is classified by ANSI/ASHRAE as class A2L refrigerant (lower flammability and lower toxicity).
Fluorinated gases (F-gases) are a group of gases containing fluorine. They are divided into several types, the main of those are hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), sulphur hexafluoride (SF6). They are used in refrigeration, air conditioning, heat pumps, fire suppression, electronics, aerospace, magnesium industry, foam and high voltage switchgear. As they are greenhouse gases with a strong global warming potential, their use is regulated.