Vanadium(V) oxytrifluoride

Last updated
Vanadium(V) oxytrifluoride
VOF3.png
Names
Other names
Vanadium oxyfluoride, trifluorooxovanadium
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.849 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • O=[V](F)(F)F
Properties
F3OV
Molar mass 123.9599 g/mol
Appearanceyellowish orange powder
Density 2.4590 g/cm3
Melting point 300 °C (572 °F; 573 K)
Boiling point 480 °C (896 °F; 753 K)
insoluble
Hazards
GHS labelling: [1]
GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314, H332
P260, P261, P264, P270, P271, P280, P301+P310, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P322, P330, P361, P363, P405, P501
NFPA 704 (fire diamond)
3
Related compounds
Related compounds
VF5
VOCl3
VO2F
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Vanadium(V) oxytrifluoride is a chemical compound with the formula V O F3. It is one of several vanadium(V) oxyhalides. VOF3 is a yellowish orange powder that is sensitive to moisture. [2] Characteristic of early metal fluorides, the structure is polymeric in the solid state. The solid adopts a layered structure but upon evaporation, the species becomes dimeric. In contrast VOCl3 and VOBr3 remain tetrahedral in all states, being volatile liquids at room temperature. [3]

In organic synthesis, VOF3 is often used for the oxidative coupling of phenolic rings, for example in the syntheses of vancomycin and its analogues. [4] For these applications VOF3 is typically dissolved in trifluoroacetic acid.

Related Research Articles

<span class="mw-page-title-main">Inorganic chemistry</span> Field of chemistry

Inorganic chemistry deals with synthesis and behavior of inorganic and organometallic compounds. This field covers chemical compounds that are not carbon-based, which are the subjects of organic chemistry. The distinction between the two disciplines is far from absolute, as there is much overlap in the subdiscipline of organometallic chemistry. It has applications in every aspect of the chemical industry, including catalysis, materials science, pigments, surfactants, coatings, medications, fuels, and agriculture.

<span class="mw-page-title-main">Lithium aluminium hydride</span> Chemical compound

Lithium aluminium hydride, commonly abbreviated to LAH, is an inorganic compound with the chemical formula Li[AlH4] or LiAlH4. It is a white solid, discovered by Finholt, Bond and Schlesinger in 1947. This compound is used as a reducing agent in organic synthesis, especially for the reduction of esters, carboxylic acids, and amides. The solid is dangerously reactive toward water, releasing gaseous hydrogen (H2). Some related derivatives have been discussed for hydrogen storage.

<span class="mw-page-title-main">Manganese(III) fluoride</span> Chemical compound

Manganese(III) fluoride (also known as Manganese trifluoride) is the inorganic compound with the formula MnF3. This red/purplish solid is useful for converting hydrocarbons into fluorocarbons, i.e., it is a fluorination agent. It forms a hydrate and many derivatives.

<span class="mw-page-title-main">Vanadium(V) oxide</span> Precursor to vanadium alloys and industrial catalyst

Vanadium(V) oxide (vanadia) is the inorganic compound with the formula V2O5. Commonly known as vanadium pentoxide, it is a brown/yellow solid, although when freshly precipitated from aqueous solution, its colour is deep orange. Because of its high oxidation state, it is both an amphoteric oxide and an oxidizing agent. From the industrial perspective, it is the most important compound of vanadium, being the principal precursor to alloys of vanadium and is a widely used industrial catalyst.

<span class="mw-page-title-main">Vanadium oxytrichloride</span> Chemical compound

Vanadium oxytrichloride is the inorganic compound with the formula VOCl3. This yellow distillable liquid hydrolyzes readily in air. It is an oxidizing agent. It is used as a reagent in organic synthesis. Samples often appear red or orange owing to an impurity of vanadium tetrachloride.

<span class="mw-page-title-main">Ammonium metavanadate</span> Chemical compound

Ammonium metavanadate is the inorganic compound with the formula NH4VO3. It is a white salt, although samples are often yellow owing to impurities of V2O5. It is an important intermediate in the purification of vanadium.

<span class="mw-page-title-main">Vanadium(III) chloride</span> Chemical compound

Vanadium trichloride is the inorganic compound with the formula VCl3. This purple salt is a common precursor to other vanadium(III) complexes.

<span class="mw-page-title-main">Molybdenum(V) chloride</span> Chemical compound

Molybdenum(V) chloride is the inorganic compound with the empirical formula MoCl5. This dark volatile solid is used in research to prepare other molybdenum compounds. It is moisture-sensitive and soluble in chlorinated solvents.

<span class="mw-page-title-main">Vanadium(III) bromide</span> Chemical compound

Vanadium(III) bromide, also known as vanadium tribromide, is the inorganic compound with the formula VBr3. It is a green-black solid. In terms of its structure, the compound is polymeric with octahedral vanadium(III) surrounded by six bromide ligands.

<span class="mw-page-title-main">Vanadium(II) chloride</span> Chemical compound

Vanadium(II) chloride is the inorganic compound with the formula VCl2, and is the most reduced vanadium chloride. Vanadium(II) chloride is an apple-green solid that dissolves in water to give purple solutions.

<span class="mw-page-title-main">Vanadium(III) oxide</span> Chemical compound

Vanadium(III) oxide is the inorganic compound with the formula V2O3. It is a black solid prepared by reduction of V2O5 with hydrogen or carbon monoxide. It is a basic oxide dissolving in acids to give solutions of vanadium (III) complexes. V2O3 has the corundum structure. It is antiferromagnetic with a critical temperature of 160 K. At this temperature there is an abrupt change in conductivity from metallic to insulating. This also distorts the crystal structure to a monoclinic space group: C2/c.

<span class="mw-page-title-main">Vanadium compounds</span>

Vanadium compounds are compounds formed by the element vanadium (V). The chemistry of vanadium is noteworthy for the accessibility of the four adjacent oxidation states 2–5, whereas the chemistry of the other group 5 elements, niobium and tantalum, are somewhat more limited to the +5 oxidation state. In aqueous solution, vanadium forms metal aquo complexes of which the colours are lilac [V(H2O)6]2+, green [V(H2O)6]3+, blue [VO(H2O)5]2+, yellow-orange oxides [VO(H2O)5]3+, the formula for which depends on pH. Vanadium(II) compounds are reducing agents, and vanadium(V) compounds are oxidizing agents. Vanadium(IV) compounds often exist as vanadyl derivatives, which contain the VO2+ center.

<span class="mw-page-title-main">Tetrabutylammonium tribromide</span> Chemical compound

Tetrabutylammonium tribromide, abbreviated to TBATB, is a pale orange solid with the formula [N(C4H9)4]Br3. It is a salt of the lipophilic tetrabutylammonium cation and the linear tribromide anion. The salt is sometimes used as a reagent used in organic synthesis as a conveniently weighable, solid source of bromine.

Soft chemistry is a type of chemistry that uses reactions at ambient temperature in open reaction vessels with reactions similar to those occurring in biological systems.

Metal acetylacetonates are coordination complexes derived from the acetylacetonate anion (CH
3
COCHCOCH
3
) and metal ions, usually transition metals. The bidentate ligand acetylacetonate is often abbreviated acac. Typically both oxygen atoms bind to the metal to form a six-membered chelate ring. The simplest complexes have the formula M(acac)3 and M(acac)2. Mixed-ligand complexes, e.g. VO(acac)2, are also numerous. Variations of acetylacetonate have also been developed with myriad substituents in place of methyl (RCOCHCOR). Many such complexes are soluble in organic solvents, in contrast to the related metal halides. Because of these properties, acac complexes are sometimes used as catalyst precursors and reagents. Applications include their use as NMR "shift reagents" and as catalysts for organic synthesis, and precursors to industrial hydroformylation catalysts. C
5
H
7
O
2
in some cases also binds to metals through the central carbon atom; this bonding mode is more common for the third-row transition metals such as platinum(II) and iridium(III).

<span class="mw-page-title-main">Vanadyl acetylacetonate</span> Chemical compound

Vanadyl acetylacetonate is the chemical compound with the formula VO(acac)2, where acac is the conjugate base of acetylacetone. It is a blue-green solid that dissolves in polar organic solvents. The coordination complex consists of the vanadyl group, VO2+, bound to two acac ligands via the two oxygen atoms on each. Like other charge-neutral acetylacetonate complexes, it is not soluble in water.

<span class="mw-page-title-main">Vanadium pentafluoride</span> Chemical compound

Vanadium(V) fluoride is the inorganic compound with the chemical formula VF5. It is a colorless volatile liquid. It is a highly reactive compound, as indicated by its ability to fluorinate organic substances.

<span class="mw-page-title-main">Bismuth(III) nitrate</span> Chemical compound

Bismuth(III) nitrate is a salt composed of bismuth in its cationic +3 oxidation state and nitrate anions. The most common solid form is the pentahydrate. It is used in the synthesis of other bismuth compounds. It is available commercially. It is the only nitrate salt formed by a group 15 element, indicative of bismuth's metallic nature.

Vanadium phosphates are inorganic compounds with the formula VOxPO4 as well related hydrates with the formula VOxPO4(H2O)n. Some of these compounds are used commercially as catalysts for oxidation reactions.

<span class="mw-page-title-main">Vanadium(II) sulfate</span> Chemical compound

Vanadium(II) sulfate describes a family of inorganic compounds with the formula VSO4(H2O)x where 0 ≤ x ≤ 7. The hexahydrate is most commonly encountered. It is a violet solid that dissolves in water to give air-sensitive solutions of the aquo complex. The salt is isomorphous with [Mg(H2O)6]SO4. Compared to the V–O bond length of 191 pm in [V(H2O)6]3+, the V–O distance is 212 pm in the [V(H2O)6]SO4. This nearly 10% elongation reflects the effect of the lower charge, hence weakened electrostatic attraction.

References

  1. "Trifluorooxovanadium". pubchem.ncbi.nlm.nih.gov.
  2. Perry, Dale L. (2011). Handbook of Inorganic Compounds. CRC Press. ISBN   978-1-4398-1461-1.
  3. Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 2001. ISBN   0-12-352651-5.
  4. Vanasse, Benoit; O'Brien, Michael K. (2001). "Vanadyl Trifluoride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rv005. ISBN   0471936235.