Vanadium nitride

Last updated
Vanadium nitride
NaCl polyhedra.png
Names
IUPAC name
Vanadium nitride
Other names
Vanadium(III) nitride
Identifiers
ECHA InfoCard 100.042.151 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 246-382-4
PubChem CID
  • InChI=1S/N.V
    Key: SKKMWRVAJNPLFY-UHFFFAOYSA-N
Properties
VN
Molar mass 64.9482 g/mol
Appearanceblack powder
Density 6.13 g/cm3
Melting point 2,050 °C (3,720 °F; 2,320 K)
Structure
cubic, cF8
Fm3m, No. 225
Hazards
GHS classification and labelling:
GHS-pictogram-exclam.svg
Warning
H302, H312, H332
P261, P264, P270, P271, P280, P301+P312, P302+P352, P304+P312, P304+P340, P312, P322, P330, P363, P501
Flash point Non-flammable
Related compounds
Other anions
vanadium(III) oxide, vanadium carbide
Other cations
titanium nitride, chromium(III) nitride, niobium nitride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Vanadium nitride, VN, is a chemical compound of vanadium and nitrogen.

Vanadium nitride is formed during the nitriding of steel and increases wear resistance. [1] Another phase, V2N, also referred to as vanadium nitride, can be formed along with VN during nitriding. [2] VN has a cubic, rock-salt structure. There is also a low-temperature form, which contains V4 clusters. [3] The low-temperature phase results from a dynamic instability, when the energy of vibrational modes in the high-temperature NaCl-structure phase, are reduced below zero. [4]

It is a strong-coupled superconductor. [5] Nanocrystalline vanadium nitride has been claimed to have potential for use in supercapacitors. [6] The properties of vanadium nitride depend sensitively on the stoichiometry of the material. [7]

Related Research Articles

Amorphous solid Non-crystalline solid

In condensed matter physics and materials science, an amorphous or non-crystalline solid is a solid that lacks the long-range order that is characteristic of a crystal. In some older books, the term has been used synonymously with glass. Nowadays, "glassy solid" or "amorphous solid" is considered to be the overarching concept, and glass the more special case: glass is an amorphous solid stabilized below its glass transition temperature. Polymers are often amorphous. Other types of amorphous solids include gels, thin films, and nanostructured materials such as glass.

BCS theory Microscopic theory of superconductivity

BCS theory or Bardeen–Cooper–Schrieffer theory is the first microscopic theory of superconductivity since Heike Kamerlingh Onnes's 1911 discovery. The theory describes superconductivity as a microscopic effect caused by a condensation of Cooper pairs. The theory is also used in nuclear physics to describe the pairing interaction between nucleons in an atomic nucleus.

Superconductivity Electrical conductivity with exactly zero resistance

Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike an ordinary metallic conductor, whose resistance decreases gradually as its temperature is lowered even down to near absolute zero, a superconductor has a characteristic critical temperature below which the resistance drops abruptly to zero. An electric current through a loop of superconducting wire can persist indefinitely with no power source.

High-temperature superconductivity Superconductive behavior at temperatures much higher than absolute zero

High-temperature superconductors are operatively defined as materials that behave as superconductors at temperatures above 77 K, the boiling point of liquid nitrogen, one of the simplest coolants in cryogenics. All materials currently known to conduct at ordinary pressures become superconducting at temperatures far below ambient, and therefore require cooling. The majority of high-temperature superconductors are ceramic materials. On the other hand, Metallic superconductors usually work below −200 °C: they are then called low-temperature superconductors. Metallic superconductors are also ordinary superconductors, since they were discovered and used before the high-temperature ones.

Aluminium nitride Chemical compound

Aluminium nitride (AlN) is a solid nitride of aluminium. It has a high thermal conductivity of up to 321 W/(m·K) and is an electrical insulator. Its wurtzite phase (w-AlN) has a band gap of ~6 eV at room temperature and has a potential application in optoelectronics operating at deep ultraviolet frequencies.

In chemistry, a nitride is a compound of nitrogen where nitrogen has a formal oxidation state of −3. Nitrides are a large class of compounds with a wide range of properties and applications.

Titanium nitride Chemical compound

Titanium nitride is an extremely hard ceramic material, often used as a coating on titanium alloys, steel, carbide, and aluminium components to improve the substrate's surface properties.

History of superconductivity

Superconductivity is the phenomenon of certain materials exhibiting zero electrical resistance and the expulsion of magnetic fields below a characteristic temperature. The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.

Zirconium nitride Chemical compound

Zirconium nitride is an inorganic compound used in a variety of ways due to its properties.

Pseudogap State at which a Fermi surface has a partial energy gap in condensed matter physics

In condensed matter physics, a pseudogap describes a state where the Fermi surface of a material possesses a partial energy gap, for example, a band structure state where the Fermi surface is gapped only at certain points. The term pseudogap was coined by Nevill Mott in 1968 to indicate a minimum in the density of states at the Fermi level, N(EF), resulting from Coulomb repulsion between electrons in the same atom, a band gap in a disordered material or a combination of these. In the modern context pseudogap is a term from the field of high-temperature superconductivity which refers to an energy range which has very few states associated with it. This is very similar to a true 'gap', which is an energy range that contains no allowed states. Such gaps open up, for example, when electrons interact with the lattice. The pseudogap phenomenon is observed in a region of the phase diagram generic to cuprate high-temperature superconductors, existing in underdoped specimens at temperatures above the superconducting transition temperature.

Vanadium(IV) oxide Chemical compound

Vanadium(IV) oxide or vanadium dioxide is an inorganic compound with the formula VO2. It is a dark blue solid. Vanadium(IV) dioxide is amphoteric, dissolving in non-oxidising acids to give the blue vanadyl ion, [VO]2+ and in alkali to give the brown [V4O9]2− ion, or at high pH [VO4]4−. VO2 has a phase transition very close to room temperature (~66 °C). Electrical resistivity, opacity, etc, can change up several orders. Owing to these properties, it has been used in surface coating, sensors, and imaging. Potential applications include use in memory devices, phase-change switches, aerospace communication systems and neuromorphic computing.

Indium(III) oxide Chemical compound

Indium(III) oxide (In2O3) is a chemical compound, an amphoteric oxide of indium.

Niobium nitride Chemical compound

Niobium nitride is a compound of niobium and nitrogen (nitride) with the chemical formula NbN. At low temperatures NbN becomes a superconductor, and is used in detectors for infrared light.

Covalent superconductor Superconducting materials where the atoms are linked by covalent bonds

Covalent superconductors are superconducting materials where the atoms are linked by covalent bonds. The first such material was boron-doped synthetic diamond grown by the high-pressure high-temperature (HPHT) method. The discovery had no practical importance, but surprised most scientists as superconductivity had not been observed in covalent semiconductors, including diamond and silicon.

Titanium aluminium nitride

Titanium aluminium nitride (TiAlN) or aluminium titanium nitride is a group of metastable hard coatings consisting of nitrogen and the metallic elements aluminium and titanium. Four important compositions are deposited in industrial scale by physical vapor deposition methods:

MAX phases

The MAX phases are layered, hexagonal carbides and nitrides which have the general formula: Mn+1AXn, (MAX) where n = 1 to 4, and M is an early transition metal, A is an A-group (mostly IIIA and IVA, or groups 13 and 14) element and X is either carbon and/or nitrogen. The layered structure consists of edge-sharing, distorted XM6 octahedra interleaved by single planar layers of the A-group element.

Heavy fermion superconductors are a type of unconventional superconductor.

The Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phase can arise in a superconductor in large magnetic field. Among its characteristics are Cooper pairs with nonzero total momentum and a spatially non-uniform order parameter, leading to normal conducting areas in the superconductor.

CeCoIn5 ("Cerium-Cobalt-Indium 5") is a heavy-fermion superconductor with a layered crystal structure, with somewhat two-dimensional electronic transport properties. The critical temperature of 2.3 K is the highest among all of the Ce-based heavy-fermion superconductors.

References

  1. Munozriofano, R; Casteletti, L; Nascente, P (2006). "Study of the wear behavior of ion nitrided steels with different vanadium contents". Surface and Coatings Technology. 200 (20–21): 6101. doi:10.1016/j.surfcoat.2005.09.026.
  2. Thermo reactive diffusion vanadium nitride coatings on AISI 1020 steel U.Sen Key Engineering Materials vols 264-268 (2004),577
  3. Kubel, F.; Lengauer, W.; Yvon, K.; Junod, A. (1988). "Structural phase transition at 205 K in stoichiometric vanadium nitride". Physical Review B. 38 (18): 12908. doi:10.1103/PhysRevB.38.12908.
  4. A. B. Mei; O. Hellman; N. Wireklint; C. M. Schlepütz; D. G. Sangiovanni; B. Alling; A. Rockett; L. Hultman; I. Petrov & J. E. Greene (2015). "Dynamic and structural stability of cubic vanadium nitride". Physical Review B. 91 (5): 054101. doi: 10.1103/PhysRevB.91.054101 .
  5. Zhao, B. R.; Chen, L.; Luo, H. L.; Mullin, D. P. (1984). "Superconducting and normal-state properties of vanadium nitride". Physical Review B. 29 (11): 6198. doi:10.1103/PhysRevB.29.6198.
  6. Choi, D.; Blomgren, G. E.; Kumta, P. N. (2006). "Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors". Advanced Materials. 18 (9): 1178. doi:10.1002/adma.200502471.
  7. Mei, A. B.; Tuteja, M.; Sangiovanni, D. G.; Haasch, R. T.; Rockett, A.; Hultman, L.; Petrov, I.; Greene, J. E. (2016-08-25). "Growth, nanostructure, and optical properties of epitaxial VNx/MgO(001) (0.80 ≤ x ≤ 1.00) layers deposited by reactive magnetron sputtering". Journal of Materials Chemistry C. 4 (34): 7924–7938. doi:10.1039/C6TC02289H. ISSN   2050-7534.