Graphitic carbon nitride

Last updated
Comparison of bulk g-C3N4 (left) and nanosheet g-C3N4 powders, 100 mg each. G-C3N4 and TECN powders.jpg
Comparison of bulk g-C3N4 (left) and nanosheet g-C3N4 powders, 100 mg each.

Graphitic carbon nitride (g-C3N4) is a family of carbon nitride compounds with a general formula near to C3N4 (albeit typically with non-zero amounts of hydrogen) and two major substructures based on heptazine and poly(triazine imide) units which, depending on reaction conditions, exhibit different degrees of condensation, properties and reactivities.

Contents

Preparation

Graphitic carbon nitride can be made by polymerization of cyanamide, dicyandiamide or melamine. The firstly formed polymeric C3N4 structure, melon, with pendant amino groups, is a highly ordered polymer. Further reaction leads to more condensed and less defective C3N4 species, based on tri-s-triazine (C6N7) units as elementary building blocks. [2]

Graphitic carbon nitride can also be prepared by electrodeposition on Si(100) substrate from a saturated acetone solution of cyanuric trichloride and melamine (ratio =1: 1.5) at room temperature. [3]

Well-crystallized graphitic carbon nitride nanocrystallites can also be prepared via benzene-thermal reaction between C3N3Cl3 and NaNH2 at 180–220 °C for 8–12 h. [4]

Recently, a new method of syntheses of graphitic carbon nitrides by heating at 400-600 °C of a mixture of melamine and uric acid in the presence of alumina has been reported. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). [5]

Characterization

Characterization of crystalline g-C3N4 can be carried out by identifying the triazine ring existing in the products by X-ray photoelectron spectroscopy (XPS) measurements, photoluminescence spectra and Fourier transform infrared spectroscopy (FTIR) spectrum (peaks at 800 cm−1, 1310 cm−1 and 1610 cm−1). [4]

Properties

Due to the special semiconductor properties of carbon nitrides, they show unexpected catalytic activity for a variety of reactions, such as for the activation of benzene, trimerization reactions, and also the activation of carbon dioxide (artificial photosynthesis). [2]

Uses

A commercial graphitic carbon nitride is available under the brand name Nicanite. In its micron-sized graphitic form, it can be used for tribological coatings, biocompatible medical coatings, chemically inert coatings, insulators and for energy storage solutions. [6] Graphitic carbon nitride is reported as one of the best hydrogen storage materials. [7] [8] It can also be used as a support for catalytic nanoparticles. [1]

Areas of interest

Due to their properties (primarily large, tuneable band gaps and efficient intercalation of salts) graphitic carbon nitrides are under research for a variety of applications:

See also

Related Research Articles

A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis to convert sunlight, water, and carbon dioxide into carbohydrates and oxygen. The term artificial photosynthesis is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel. Photocatalytic water splitting converts water into hydrogen and oxygen and is a major research topic of artificial photosynthesis. Light-driven carbon dioxide reduction is another process studied that replicates natural carbon fixation.

<span class="mw-page-title-main">Water splitting</span> Chemical reaction

Water splitting is the chemical reaction in which water is broken down into oxygen and hydrogen:

<span class="mw-page-title-main">Photocatalysis</span> Acceleration of a photoreaction in the presence of a catalyst

In chemistry, photocatalysis is the acceleration of a photoreaction in the presence of a photocatalyst, the excited state of which "repeatedly interacts with the reaction partners forming reaction intermediates and regenerates itself after each cycle of such interactions." In many cases, the catalyst is a solid that upon irradiation with UV- or visible light generates electron–hole pairs that generate free radicals. Photocatalysts belong to three main groups; heterogeneous, homogeneous, and plasmonic antenna-reactor catalysts. The use of each catalysts depends on the preferred application and required catalysis reaction.

<span class="mw-page-title-main">Heptazine</span> Chemical compound

Heptazine, or tri-s-triazine or cyamelurine, is a chemical compound with formula C
6
N
7
H
3
, that consist of a planar triangular core group or three fused triazine rings, with three hydrogen atoms at the corners. It is a yellow, weakly fluorescent solid with melting point over 300 °C. It is soluble in organic solvents such as acetonitrile, but is decomposed by water in the presence of light.

<span class="mw-page-title-main">Melon (chemistry)</span>

In chemistry, melon is a compound of carbon, nitrogen, and hydrogen of still somewhat uncertain composition, consisting mostly of heptazine units linked and closed by amine groups and bridges. It is a pale yellow solid, insoluble in most solvents.

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

<span class="mw-page-title-main">Nanocomposite</span> Solid material with nano-scale structure

Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometers (nm) or structures having nano-scale repeat distances between the different phases that make up the material.

<span class="mw-page-title-main">Nanoporous materials</span>

Nanoporous materials consist of a regular organic or inorganic bulk phase in which a porous structure is present. Nanoporous materials exhibit pore diameters that are most appropriately quantified using units of nanometers. The diameter of pores in nanoporous materials is thus typically 100 nanometers or smaller. Pores may be open or closed, and pore connectivity and void fraction vary considerably, as with other porous materials. Open pores are pores that connect to the surface of the material whereas closed pores are pockets of void space within a bulk material. Open pores are useful for molecular separation techniques, adsorption, and catalysis studies. Closed pores are mainly used in thermal insulators and for structural applications.

Photocatalytic water splitting is a process that uses photocatalysis for the dissociation of water (H2O) into hydrogen (H
2
) and oxygen (O
2
). Only light energy (photons), water, and a catalyst(s) are needed, since this is what naturally occurs in natural photosynthetic oxygen production and CO2 fixation. Photocatalytic water splitting is done by dispersing photocatalyst particles in water or depositing them on a substrate, unlike Photoelectrochemical cell, which are assembled into a cell with a photoelectrode.

Carbide-derived carbon (CDC), also known as tunable nanoporous carbon, is the common term for carbon materials derived from carbide precursors, such as binary (e.g. SiC, TiC), or ternary carbides, also known as MAX phases (e.g., Ti2AlC, Ti3SiC2). CDCs have also been derived from polymer-derived ceramics such as Si-O-C or Ti-C, and carbonitrides, such as Si-N-C. CDCs can occur in various structures, ranging from amorphous to crystalline carbon, from sp2- to sp3-bonded, and from highly porous to fully dense. Among others, the following carbon structures have been derived from carbide precursors: micro- and mesoporous carbon, amorphous carbon, carbon nanotubes, onion-like carbon, nanocrystalline diamond, graphene, and graphite. Among carbon materials, microporous CDCs exhibit some of the highest reported specific surface areas (up to more than 3000 m2/g). By varying the type of the precursor and the CDC synthesis conditions, microporous and mesoporous structures with controllable average pore size and pore size distributions can be produced. Depending on the precursor and the synthesis conditions, the average pore size control can be applied at sub-Angstrom accuracy. This ability to precisely tune the size and shapes of pores makes CDCs attractive for selective sorption and storage of liquids and gases (e.g., hydrogen, methane, CO2) and the high electric conductivity and electrochemical stability allows these structures to be effectively implemented in electrical energy storage and capacitive water desalinization.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span> Novel catalyst using carbon nanotubes as the support instead of the conventional alumina

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

<span class="mw-page-title-main">Cobalt oxide nanoparticle</span>

In materials and electric battery research, cobalt oxide nanoparticles usually refers to particles of cobalt(II,III) oxide Co
3
O
4
of nanometer size, with various shapes and crystal structures.

<span class="mw-page-title-main">Photogeochemistry</span>

Photogeochemistry merges photochemistry and geochemistry into the study of light-induced chemical reactions that occur or may occur among natural components of Earth's surface. The first comprehensive review on the subject was published in 2017 by the chemist and soil scientist Timothy A Doane, but the term photogeochemistry appeared a few years earlier as a keyword in studies that described the role of light-induced mineral transformations in shaping the biogeochemistry of Earth; this indeed describes the core of photogeochemical study, although other facets may be admitted into the definition.

<span class="mw-page-title-main">Boron nitride nanotube</span> Polymorph of boron nitride

Boron nitride nanotubes (BNNTs) are a polymorph of boron nitride. They were predicted in 1994 and experimentally discovered in 1995. Structurally they are similar to carbon nanotubes, which are cylinders with sub-micrometer diameters and micrometer lengths, except that carbon atoms are alternately substituted by nitrogen and boron atoms. However, the properties of BN nanotubes are very different: whereas carbon nanotubes can be metallic or semiconducting depending on the rolling direction and radius, a BN nanotube is an electrical insulator with a bandgap of ~5.5 eV, basically independent of tube chirality and morphology. In addition, a layered BN structure is much more thermally and chemically stable than a graphitic carbon structure. BNNTs have unique physical and chemical properties, when compared to Carbon Nanotubes (CNTs) providing a very wide range of commercial and scientific applications. Although BNNTs and CNTs share similar tensile strength properties of circa 100 times stronger than steel and 50 times stronger than industrial-grade carbon fibre, BNNTs can withstand high temperatures of up to 900 °C. as opposed to CNTs which remain stable up to temperatures of 400 °C, and are also capable of absorbing radiation. BNNTS are packed with physicochemical features including high hydrophobicity and considerable hydrogen storage capacity and they are being investigated for possible medical and biomedical applications, including gene delivery, drug delivery, neutron capture therapy, and more generally as biomaterials BNNTs are also superior to CNTs in the way they bond to polymers giving rise to many new applications and composite materials.

<span class="mw-page-title-main">Synthesis of carbon nanotubes</span> Class of manufacturing

Techniques have been developed to produce carbon nanotubes in sizable quantities, including arc discharge, laser ablation, high-pressure carbon monoxide disproportionation, and chemical vapor deposition (CVD). Most of these processes take place in a vacuum or with process gases. CVD growth of CNTs can occur in vacuum or at atmospheric pressure. Large quantities of nanotubes can be synthesized by these methods; advances in catalysis and continuous growth are making CNTs more commercially viable.

Vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.

Nitrogen-doped carbon nanotubes (N-CNTs) can be produced through five main methods; chemical vapor deposition (CVD), high-temperature and high-pressure reactions, gas-solid reaction of amorphous carbon with NH3 at high temperature, solid reaction, and solvothermal synthesis.

In chemistry, plasmonic catalysis is a type of catalysis that uses plasmons to increase the rate of a chemical reaction. A plasmonic catalyst is made up of a metal nanoparticle surface which generates localized surface plasmon resonances (LSPRs) when excited by light. These plasmon oscillations create an electron-rich region near the surface of the nanoparticle, which can be used to excite the electrons of nearby molecules.

<span class="mw-page-title-main">Chuanyi Wang</span> Environmental chemistry scientist

Chuanyi Wang is a Chinese American, environmental chemistry scientist, academic, and an author. He is a Distinguished Professor and Academic Dean at the School of Environmental Science and Engineering at the Shaanxi University of Science & Technology. He is recognized for his research in environmental photocatalysis, environmental materials, surface/interface chemistry, nanomaterials, and pollution controlling.

References

  1. 1 2 Chen, Xiufang; Zhang, Ligang; Zhang, Bo; Guo, Xingcui; Mu, Xindong (2016). "Highly selective hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on g-C3N4 nanosheets catalysts in water". Scientific Reports. 6: 28558. Bibcode:2016NatSR...628558C. doi:10.1038/srep28558. PMC   4916514 . PMID   27328834.
  2. 1 2 Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M. (2008). "Graphitic Carbon Nitride Materials: Variation of Structure and Morphology and their Use as Metal-Free Catalysts". Journal of Materials Chemistry. 18 (41): 4893–4908. CiteSeerX   10.1.1.529.6230 . doi:10.1039/b800274f. S2CID   53124927.
  3. Li, C.; Cao, C.; Zhu H. (2003). "Preparation of Graphitic Carbon Nitride by Electrodeposition". Chinese Science Bulletin. 48 (16): 1737–1740. Bibcode:2003ChSBu..48.1737L. doi:10.1360/03wb0011. S2CID   198138645.
  4. 1 2 Guo, Q. X.; Xie, Y.; Wang, X. J.; Lv, S. C.; Hou, T.; Liu, X. M. (2003). "Characterization of Well-Crystallized Graphitic Carbon Nitride Nanocrystallites via a Benzene-Thermal Route at Low Temperatures". Chemical Physics Letters. 380 (1–2): 84–87. Bibcode:2003CPL...380...84G. doi:10.1016/j.cplett.2003.09.009.
  5. Dante, R. C.; Martín-Ramos, P.; Correa-Guimaraes, A.; Martín-Gil, J. (2011). "Synthesis of Graphitic Carbon Nitride by Reaction of Melamine and Uric Acid". Materials Chemistry and Physics. 130 (3): 1094–1102. doi:10.1016/j.matchemphys.2011.08.041.
  6. "Nicanite, Graphitic Carbon Nitride". Carbodeon.
  7. Nair, Asalatha A. S.; Sundara, Ramaprabhu; Anitha, N. (2015-03-02). "Hydrogen storage performance of palladium nanoparticles decorated graphitic carbon nitride". International Journal of Hydrogen Energy. 40 (8): 3259–3267. doi:10.1016/j.ijhydene.2014.12.065.
  8. Nair, Asalatha A. S.; Sundara, Ramaprabhu (2016-05-12). "Palladium Cobalt Alloy Catalyst Nanoparticles Facilitated Enhanced Hydrogen Storage Performance of Graphitic Carbon Nitride". The Journal of Physical Chemistry C. 120 (18): 9612–9618. doi:10.1021/acs.jpcc.6b01850.
  9. Wang, Xinchen; Maeda, Kazuhiko; Thomas, Arne; Takanabe, Kazuhiro; Xin, Gang; Carlsson, Johan M.; Domen, Kazunari; Antonietti, Markus (2009). "A metal-free polymeric photocatalyst for hydrogen production from water under visible light". Nature Materials. 8 (1): 76–80. Bibcode:2009NatMa...8...76W. doi:10.1038/nmat2317. PMID   18997776. S2CID   205402078.
  10. 1 2 Mansor, Noramalina; Miller, Thomas S.; Dedigama, Ishanka; Jorge, Ana Belen; Jia, Jingjing; Brázdová, Veronika; Mattevi, Cecilia; Gibbs, Chris; Hodgson, David (2016). "Graphitic Carbon Nitride as a Catalyst Support in Fuel Cells and Electrolyzers". Electrochimica Acta. 222: 44–57. doi: 10.1016/j.electacta.2016.11.008 . hdl: 10044/1/42293 .
  11. Thomas, Arne; Fischer, Anna; Goettmann, Frederic; Antonietti, Markus; Müller, Jens-Oliver; Schlögl, Robert; Carlsson, Johan M. (2008-10-14). "Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts". Journal of Materials Chemistry. 18 (41): 4893. CiteSeerX   10.1.1.529.6230 . doi:10.1039/b800274f. ISSN   1364-5501. S2CID   53124927.
  12. Niu P, Zhang L L, Liu G, Cheng H M et al. Graphene-Like Carbon Nitride Nanosheets for Improved Photocatalytic Activities[J]. Advanced Functional Materials, 2012, 22(22): 4763-4770.
  13. Zhang L Q, He X, Xu X W et al. Highly active TiO2/g-C3N4/G photocatalyst with extended spectralresponse towards selective reduction of nitrobenzene[J]. Applied Catalysis B: Environmental. 2017, 203:65-71.
  14. Dong F, Li Y H, Wang Z Y, Ho W K et al. Enhanced visible light photocatalytic activity and oxidation ability ofporous graphene-like g-C3N4nanosheets via thermal exfoliation[J]. Applied Surface Science, 2015, 358: 393–403.
  15. Mishra A K, Mamba G et al. Graphic carbon nitride nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B, 2016, 21: 351-371.
  16. Wu, Menghao; Wang, Qian; Sun, Qiang; Jena, Puru (2013-03-28). "Functionalized Graphitic Carbon Nitride for Efficient Energy Storage". The Journal of Physical Chemistry C. 117 (12): 6055–6059. doi:10.1021/jp311972f. ISSN   1932-7447.