Names | |
---|---|
IUPAC name Iodine azide | |
Other names Azidoiodine, Iodo azide | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
IN3 | |
Molar mass | 168.92 g/mol |
Appearance | yellow solid |
decomposes | |
Vapor pressure | 2 Torr |
Structure | |
orthorhombic | |
Pbam, No. 55 | |
Related compounds | |
Related compounds | Hydrazoic acid Fluorine azide Chlorine azide Bromine azide |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Iodine azide (IN3) is an explosive inorganic compound, which in ordinary conditions is a yellow solid. [1] Formally, it is an inter-pseudohalogen.
Iodine azide can be prepared from the reaction between silver azide and elemental iodine:
Since silver azide can only be handled safely while moist, but even small traces of water cause the iodine azide to decompose, this synthesis is done by suspending the silver azide in dichloromethane and adding a drying agent before reaction with the iodine. In this way, a pure solution of iodine azide results, which can then be carefully evaporated to form needle-shaped golden crystals. [2]
This reaction was used in the original synthesis of iodine azide in 1900, where it was obtained as unstable solutions in ether and impure crystals contaminated by iodine. [3]
Iodine azide can also be generated in situ by reacting iodine monochloride and sodium azide under conditions where it is not explosive. [4]
In the solid state, iodine azide exists as a one-dimensional polymeric structure, [5] forming two polymorphs, both of which crystallize in an orthorhombic lattice with the space group Pbam. [5] The gas phase exists as monomeric units. [6]
Iodine azide exhibits both high reactivity and comparative stability, consequences of the polarity of the I–N bond. The N3 group introduced by substitution with iodine azide can frequently undergo subsequent reactions due to its high energy content.
The isolated compound is strongly shock- and friction-sensitive. [7] Its explosivity has been characterized as follows: [1]
Normal gas volume | 265 L/kg |
Heat of explosion | 2091 kJ/kg |
Trauzl rating | 14.0 cm3/g |
These values lie significantly lower in comparison to classical explosives like TNT or RDX, and also to acetone peroxide. Dilute solutions (< 3%) of the compound in dichloromethane can be handled safely. [2]
Despite its explosive character, iodine azide has many practical uses in chemical synthesis. Similar to bromine azide, it can add across an alkene double bond via both ionic and radical mechanisms, giving anti stereoselectivity. Addition of IN3 to an alkene followed by reduction with lithium aluminium hydride is a convenient method of aziridine synthesis. Azirines can also be synthesized from the addition product by adding base to eliminate HI, giving a vinyl azide CH2=CHN3 which undergoes thermolysis to form an azirine. Further radical modes of reactivity include radical substitutions on weak C-H bonds to form α‐azido ethers, benzal acetals, and aldehydes, and the conversion of aldehydes to acyl azides. [4] [6]
In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure −N=N+=N−. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.
The 1,3-dipolar cycloaddition is a chemical reaction between a 1,3-dipole and a dipolarophile to form a five-membered ring. The earliest 1,3-dipolar cycloadditions were described in the late 19th century to the early 20th century, following the discovery of 1,3-dipoles. Mechanistic investigation and synthetic application were established in the 1960s, primarily through the work of Rolf Huisgen. Hence, the reaction is sometimes referred to as the Huisgen cycloaddition. 1,3-dipolar cycloaddition is an important route to the regio- and stereoselective synthesis of five-membered heterocycles and their ring-opened acyclic derivatives. The dipolarophile is typically an alkene or alkyne, but can be other pi systems. When the dipolarophile is an alkyne, aromatic rings are generally produced.
Organoboron chemistry or organoborane chemistry studies organoboron compounds, also called organoboranes. These chemical compounds combine boron and carbon; typically, they are organic derivatives of borane (BH3), as in the trialkyl boranes.
Ozonide is the polyatomic anion O−3. Cyclic organic compounds formed by the addition of ozone to an alkene are also called ozonides.
The Prins reaction is an organic reaction consisting of an electrophilic addition of an aldehyde or ketone to an alkene or alkyne followed by capture of a nucleophile or elimination of an H+ ion. The outcome of the reaction depends on reaction conditions. With water and a protic acid such as sulfuric acid as the reaction medium and formaldehyde the reaction product is a 1,3-diol (3). When water is absent, the cationic intermediate loses a proton to give an allylic alcohol (4). With an excess of formaldehyde and a low reaction temperature the reaction product is a dioxane (5). When water is replaced by acetic acid the corresponding esters are formed.
Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.
Iodosobenzene or iodosylbenzene is an organoiodine compound with the empirical formula C6H5IO. This colourless solid compound is used as an oxo transfer reagent in research laboratories examining organic and coordination chemistry.
Oseltamivir total synthesis concerns the total synthesis of the antiinfluenza drug oseltamivir marketed by Hoffmann-La Roche under the trade name Tamiflu. Its commercial production starts from the biomolecule shikimic acid harvested from Chinese star anise and from recombinant E. coli. Control of stereochemistry is important: the molecule has three stereocenters and the sought-after isomer is only 1 of 8 stereoisomers.
A frustrated Lewis pair (FLP) is a compound or mixture containing a Lewis acid and a Lewis base that, because of steric hindrance, cannot combine to form a classical adduct. Many kinds of FLPs have been devised, and many simple substrates exhibit activation.
Chlorine azide is an inorganic compound that was discovered in 1908 by Friedrich Raschig. Concentrated ClN3 is notoriously unstable and may spontaneously detonate at any temperature.
Bromine azide is an explosive inorganic compound with the formula BrN3. It has been described as a crystal or a red liquid at room temperature. It is extremely sensitive to small variations in temperature and pressure, with explosions occurring at Δp ≥ 0.05 Torr and also upon crystallization, thus extreme caution must be observed when working with this chemical.
Acyl azides are carboxylic acid derivatives with the general formula RCON3. These compounds, which are a subclass of organic azides, are generally colorless.
1-Diazidocarbamoyl-5-azidotetrazole, often jokingly referred to as azidoazide azide, is a heterocyclic inorganic compound with the formula C2N14. It is a highly reactive and extremely sensitive explosive.
Carbonyl olefin metathesis is a type of metathesis reaction that entails, formally, the redistribution of fragments of an alkene and a carbonyl by the scission and regeneration of carbon-carbon and carbon-oxygen double bonds respectively. It is a powerful method in organic synthesis using simple carbonyls and olefins and converting them into less accessible products with higher structural complexity.
Togni reagent II is a chemical compound used in organic synthesis for direct electrophilic trifluoromethylation.
Sulfuryl diazide or sulfuryl azide is a chemical compound with the molecular formula SO2(N3)2. It was first described in the 1920s when its reactions with benzene and p-xylene were studied by Theodor Curtius and Karl Friedrich Schmidt. The compound is reported as having "exceedingly explosive, unpredictable properties" and "in many cases very violent explosions occurred without any apparent reason".
An organic azide is an organic compound that contains an azide functional group. Because of the hazards associated with their use, few azides are used commercially although they exhibit interesting reactivity for researchers. Low molecular weight azides are considered especially hazardous and are avoided. In the research laboratory, azides are precursors to amines. They are also popular for their participation in the "click reaction" between an azide and an alkyne and in Staudinger ligation. These two reactions are generally quite reliable, lending themselves to combinatorial chemistry.
Iron(III) azide, also called ferric azide, is a chemical compound with the formula Fe(N3)3. It is an extremely explosive, impact-sensitive, hygroscopic dark brown solid. This compound is used to prepare various azidoalkanes, such as n-butyl azide, from alkenes via formation of alkylboranes and subsequent anti-Markovnikov addition of azide group.
Tetraethylammonium trichloride (also known as Mioskowski reagent) is a chemical compound with the formula [NEt4][Cl3] consisting of a tetraethylammonium cation and a trichloride as anion. The trichloride is also known as trichlorine monoanion representing one of the simplest polychlorine anions. Tetraethylammonium trichloride is used as reagent for chlorinations and oxidation reactions.
Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer of azide groups, or for research into high-energy-density matter.