Lead(II) azide

Last updated
Lead(II) azide
Lead(II)azide.svg
Lead(II)-azide-xtal-a-2x2x2-3D-bs-17.png
Lead azide (modified beta) 01.JPG
Names
IUPAC name
Diazidolead
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.206 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-542-1
PubChem CID
UNII
UN number 0129
  • InChI=1S/2N3.Pb/c2*1-3-2;/q2*-1;+2 X mark.svgN
    Key: ISEQAARZRCDNJH-UHFFFAOYSA-N X mark.svgN
  • InChI=1S/2N3.Pb/c2*1-3-2;/q2*-1;+2
    Key: ISEQAARZRCDNJH-UHFFFAOYSA-N
  • [N-]=[N+]=N[Pb]N=[N+]=[N-]
Properties
Pb(N3)2
Molar mass 291.2 g·mol−1
AppearanceWhite powder
Density 4.71 g/cm3
Melting point 190 °C (374 °F; 463 K) decomposes, [1] explodes at 350 °C [2]
2.3 g/100 mL (18 °C)
9.0 g/100 mL (70 °C) [2]
Solubility Very soluble in acetic acid
Insoluble in ammonia solution, [2] NH4OH [1]
Thermochemistry
462.3 kJ/mol [2]
Explosive data
Shock sensitivity High
Friction sensitivity High
Detonation velocity 5180 m/s
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Harmful, explosive
GHS labelling:
GHS-pictogram-explos.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg GHS-pictogram-pollu.svg [3]
Danger
H200, H302, H332, H360, H373, H410 [3]
NFPA 704 (fire diamond)
[4]
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 0: Will not burn. E.g. waterInstability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazards (white): no code
3
0
4
350 °C (662 °F; 623 K)
Related compounds
Other cations
Potassium azide
Sodium azide
Copper(II) azide
Related compounds
Hydrazoic acid
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Lead(II) azide Pb(N 3)2 is an inorganic compound. More so than other azides, it is explosive. It is used in detonators to initiate secondary explosives. [5] In a commercially usable form, it is a white to buff powder.

Contents

Preparation and handling

Lead(II) azide is prepared by the reaction of sodium azide and lead(II) nitrate in aqueous solution. [6] [5] Lead(II) acetate can also be used. [7] [8]

Thickeners such as dextrin or polyvinyl alcohol are often added to the solution to stabilize the precipitated product. In fact, it is normally shipped in a dextrinated solution that lowers its sensitivity. [9]

Production history

Lead azide in its pure form was first prepared by Theodor Curtius in 1891. Due to sensitivity and stability concerns, the dextrinated form of lead azide (MIL-L-3055) was developed in the 1920s and 1930s with large scale production by DuPont Co beginning in 1932. [10] Detonator development during World War II resulted in the need for a form of lead azide with a more brisant output. RD-1333 lead azide (MIL-DTL-46225), a version of lead azide with sodium carboxymethyl cellulose as a precipitating agent, was developed to meet that need. The Vietnam War saw an accelerated need for lead azide and it was during this time that Special Purpose Lead Azide (MIL-L-14758) was developed; the US government also began stockpiling lead azide in large quantities. After the Vietnam War, the use of lead azide dramatically decreased. Due to the size of the US stockpile, the manufacture of lead azide in the US ceased completely by the early 1990s. In the 2000s, concerns about the age and stability of stockpiled lead azide led the US government to investigate methods to dispose of its stockpiled lead azide and obtain new manufacturers. [11]

Explosive characteristics

Lead azide is highly sensitive and usually handled and stored under water in insulated rubber containers. It will explode after a fall of around 150 mm (6 in) or in the presence of a static discharge of 7 millijoules. Its detonation velocity is around 5,180 m/s (17,000 ft/s). [12]

Ammonium acetate and sodium dichromate are used to destroy small quantities of lead azide. [13]

Lead azide has immediate deflagration to detonation transition (DDT), meaning that even small amounts undergo full detonation (after being hit by flame or static electricity).[ citation needed ]

Lead azide reacts with copper, zinc, cadmium, or alloys containing these metals to form other azides. For example, copper azide is even more explosive and too sensitive to be used commercially. [14]

Lead azide was a component of the six .22 (5.6 mm) caliber Devastator rounds fired from a Röhm RG-14 revolver by John Hinckley, Jr. in his assassination attempt on U.S. President Ronald Reagan on March 30, 1981. The rounds consisted of lead azide centers with lacquer-sealed aluminum tips designed to explode upon impact. A strong probability exists that the bullet which struck White House press secretary James Brady in the head exploded. The remaining bullets that hit people, including the shot that hit President Reagan, did not explode. [15] [16]

See also

Related Research Articles

<span class="mw-page-title-main">Explosive</span> Substance that can explode

An explosive is a reactive substance that contains a great amount of potential energy that can produce an explosion if released suddenly, usually accompanied by the production of light, heat, sound, and pressure. An explosive charge is a measured quantity of explosive material, which may either be composed solely of one ingredient or be a mixture containing at least two substances.

<span class="mw-page-title-main">Detonator</span> Small explosive device used to trigger a larger explosion

A detonator, sometimes called a blasting cap in the US, is a small sensitive device used to provoke a larger, more powerful but relatively insensitive secondary explosive of an explosive device used in commercial mining, excavation, demolition, etc.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

<span class="mw-page-title-main">Silver fulminate</span> High explosive used in bang snaps

Silver fulminate (AgCNO) is the highly explosive silver salt of fulminic acid.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

<span class="mw-page-title-main">Sodium azide</span> Chemical compound

Sodium azide is an inorganic compound with the formula NaN3. This colorless salt is the gas-forming component in some car airbag systems. It is used for the preparation of other azide compounds. It is an ionic substance, is highly soluble in water, and is very acutely poisonous.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Hydrazoic acid</span> Unstable and toxic chemical compound

Hydrazoic acid, also known as hydrogen azide or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. The oxidation state of the nitrogen atoms in hydrazoic acid is fractional and is -1/3. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Lead(II) fluoride</span> Chemical compound

Lead(II) fluoride is the inorganic compound with the formula PbF2. It is a white solid. The compound is polymorphic, at ambient temperatures it exists in orthorhombic (PbCl2 type) form, while at high temperatures it is cubic (Fluorite type).

<span class="mw-page-title-main">Copper(II) azide</span> Chemical compound

Copper(II) azide is a medium density explosive with the molecular formula Cu(N3)2.

<span class="mw-page-title-main">Lead(II) thiocyanate</span> Chemical compound

Lead(II) thiocyanate is a compound, more precisely a salt, with the formula Pb(SCN)2. It is a white crystalline solid, but will turn yellow upon exposure to light. It is slightly soluble in water and can be converted to a basic salt (Pb(CNS)2·Pb(OH)2 when boiled. Salt crystals may form upon cooling. Lead thiocyanate can cause lead poisoning if ingested and can adversely react with many substances. It has use in small explosives, matches, and dyeing.

Explosophores are functional groups in organic chemistry that give organic compounds explosive properties.

Barium azide is an inorganic azide with the formula Ba(N3)2. It is a barium salt of hydrazoic acid. Like most azides, it is explosive. It is less sensitive to mechanical shock than lead azide.

<span class="mw-page-title-main">Chlorine azide</span> Chemical compound

Chlorine azide is an inorganic compound that was discovered in 1908 by Friedrich Raschig. Concentrated ClN3 is notoriously unstable and may spontaneously detonate at any temperature.

<span class="mw-page-title-main">Silicon tetraazide</span> Chemical compound

Silicon tetraazide is a thermally unstable binary compound of silicon and nitrogen with a nitrogen content of 85.7%. This high-energy compound combusts spontaneously and can only be studied in a solution. A further coordination to a six-fold coordinated structure such as a hexaazidosilicate ion [Si(N3)6]2− or as an adduct with bicationic ligands Si(N3)4·L2 will result in relatively stable, crystalline solids that can be handled at room temperature.

<span class="mw-page-title-main">Bromine azide</span> Chemical compound

Bromine azide is an explosive inorganic compound with the formula BrN3. It has been described as a crystal or a red liquid at room temperature. It is extremely sensitive to small variations in temperature and pressure, with explosions occurring at Δp ≥ 0.05 Torr and also upon crystallization, thus extreme caution must be observed when working with this chemical.

<span class="mw-page-title-main">Rubidium azide</span> Chemical compound

Rubidium azide is an inorganic compound with the formula RbN3. It is the rubidium salt of the hydrazoic acid HN3. Like most azides, it is explosive.

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer for azide groups, or interest in high energy density materials.

References

  1. 1 2 CID 61600 from PubChem
  2. 1 2 3 4 Pradyot, Patnaik (2003). Handbook of Inorganic Chemicals. The McGraw-Hill Companies, Inc. ISBN   0-07-049439-8.
  3. 1 2 "Safety Data Sheet of Electronic Detonators, Division 1.4" (PDF). ocsresponds.com. Owen Oil Tools LP. 2014-03-21. Retrieved 2014-06-09.
  4. Keller, J.J. (1978). Hazardous Materials Guide: Suppl, Issue 4. Abel Guerrero.
  5. 1 2 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 433. ISBN   978-0-08-037941-8.
  6. Jacques Boileau; Claude Fauquignon; Bernard Hueber; Hans H. Meyer (2009). "Explosives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_143.pub2.
  7.  » LambdaSyn – Synthese von Bleiazid". www.lambdasyn.org.
  8. Verneker, V. R. Pai; Forsyth, Arthur C. (1968). "Mechanism for controlling the reactivity of lead azide". The Journal of Physical Chemistry. 72: 111–115. doi:10.1021/j100847a021. Archived from the original on September 22, 2017.
  9. Fedoroff, Basil T.; Henry A. Aaronson; Earl F. Reese; Oliver E. Sheffield; George D. Clift (1960). Encyclopedia of Explosives and Related Items (Vol. 1). US Army Research and Development Command TACOM, ARDEC.
  10. Fair, Harry David; Walker, Raymond F. (1977). Energetic Materials, Technology of the Inorganic Azides. Vol. 2. Plenum Press.
  11. Lewis, T. (2005). "Rolling stock safety assurance [railway safety]". IEE Seminar on Safety Assurance. Vol. 2005. IEE. p. 18. doi:10.1049/ic:20050419. ISBN   0-86341-574-1.
  12. Thurman, James T. (2017). Practical Bomb Scene Investigation, Third Edition (3rd ed.). Milton: CRC Press. ISBN   978-1-351-85761-1. OCLC   982451395.
  13. "Primary (Initiating) Explosives". www.tpub.com. Retrieved 2017-02-13.
  14. Lazari, Gerasimi; Stamatatos, Theocharis C.; Raptopoulou, Catherine P.; Psycharis, Vassilis; Pissas, Michael; Perlepes, Spyros P.; Boudalis, Athanassios K. (2009-04-13). "A metamagnetic 2D copper(II)-azide complex with 1D ferromagnetism and a hysteretic spin-flop transition". Dalton Transactions (17): 3215–3221. doi:10.1039/B823423J. ISSN   1477-9234. PMID   19421623.
  15. Earley, Pete; Babcock, Charles (April 4, 1981). "The Exploding Bullets". Washington Post .
  16. Taubman, Philip; Times, Special To the New York (1981-04-03). "Explosive Bullet Struck Reagan, F.b.i. Discovers". The New York Times. ISSN   0362-4331 . Retrieved 2020-05-18.