Lead metagermanate

Last updated
Lead metagermanate
PbGeO3 crystal structure.png
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 235-666-3
PubChem CID
  • InChI=1S/GeO3.Pb/c2-1(3)4;/q-2;+2
    Key: XKENYNILAAWPFQ-UHFFFAOYSA-N
  • [Pb+2].[O-][Ge](=O)[O-]
Properties
GeO3Pb
Molar mass 327.8 g·mol−1
Melting point 795 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lead metagermante is one of the germanates of lead with the chemical formula of PbGeO3. Other germanates include Pb5Ge3O11. [1]

Contents

Preparation

Lead metagermanate can be obtained by the reaction of germanium dioxide and lead acetate. [2]

Properties

Lead metagermanate is a solid with a strong thermoelectric effect. [3] It has two structural forms: the trigonal and the orthorhombic, with a transition temperature above 600 °C. [4] [5] Under high pressure, lead metagermanate can also form cubic crystals. [6]

Related Research Articles

<span class="mw-page-title-main">Germanium</span> Chemical element, symbol Ge and atomic number 32

Germanium is a chemical element with the symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors silicon and tin. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to other atoms were fully ionic. It describes the degree of oxidation of an atom in a chemical compound. Conceptually, the oxidation state may be positive, negative or zero. While fully ionic bonds are not found in nature, many bonds exhibit strong ionicity, making oxidation state a useful predictor of charge.

In chemistry, azide is a linear, polyatomic anion with the formula N−3 and structure N=N+=N. It is the conjugate base of hydrazoic acid HN3. Organic azides are organic compounds with the formula RN3, containing the azide functional group. The dominant application of azides is as a propellant in air bags.

In chemistry, a plumbate often refers to compounds that can be viewed as derivatives of the hypothetical PbO2−3 anion. The term also refers to any anion of lead or any salt thereof. So the term is vague and somewhat archaic.

<span class="mw-page-title-main">Bismuth germanate</span> Inorganic chemical compound of bismuth, germanium and oxygen

Bismuth germanium oxide or bismuth germanate is an inorganic chemical compound of bismuth, germanium and oxygen. Most commonly the term refers to the compound with chemical formula Bi4Ge3O12 (BGO), with the cubic evlitine crystal structure, used as a scintillator. (The term may also refer to a different compound with formula Bi12GeO20, an electro-optical material with sillenite structure, and Bi2Ge3O9.)

In chemistry, a Zintl phase is a product of a reaction between a group 1 or group 2 and main group metal or metalloid. It is characterized by intermediate metallic/ionic bonding. Zintl phases are a subgroup of brittle, high-melting intermetallic compounds that are diamagnetic or exhibit temperature-independent paramagnetism and are poor conductors or semiconductors.

<span class="mw-page-title-main">Germanate</span> Chemical compound

In chemistry, germanate is a compound containing an oxyanion of germanium. In the naming of inorganic compounds it is a suffix that indicates a polyatomic anion with a central germanium atom, for example potassium hexafluorogermanate, K2GeF6.

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

<span class="mw-page-title-main">Plumbylene</span>

Plumbylenes (or plumbylidenes) are divalent organolead(II) analogues of carbenes, with the general chemical formula, R2Pb, where R denotes a substituent. Plumbylenes possess 6 electrons in their valence shell, and are considered open shell species.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Arsenidogermanates are chemical compounds that contain anions with arsenic bonded to germanium. They are in the category of tetrelarsenides, pnictidogermanates, or tetrelpnictides.

Selenidogermanates are compounds with anions with selenium bound to germanium. They are analogous with germanates, thiogermanates, and telluridogermanates.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

Arsenide iodides or iodide arsenides are compounds containing anions composed of iodide (I) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide bromides, phosphide iodides, and antimonide iodides.

Tellurogallates are chemical compounds which contain anionic units of tellurium connected to gallium. They can be considered as gallates where tellurium substitutes for oxygen. Similar compounds include the thiogallates, selenogallates, telluroaluminates, telluroindates and thiostannates. They are in the category of chalcogenotrielates or more broadly tellurometallates or chalcogenometallates.

Germanium compounds are chemical compounds formed by the element germanium (Ge). Germanium is insoluble in dilute acids and alkalis but dissolves slowly in hot concentrated sulfuric and nitric acids and reacts violently with molten alkalis to produce germanates ([GeO
3
]2−
). Germanium occurs mostly in the oxidation state +4 although many +2 compounds are known. Other oxidation states are rare: +3 is found in compounds such as Ge2Cl6, and +3 and +1 are found on the surface of oxides, or negative oxidation states in germanides, such as −4 in Mg
2
Ge
. Germanium cluster anions (Zintl ions) such as Ge42−, Ge94−, Ge92−, [(Ge9)2]6− have been prepared by the extraction from alloys containing alkali metals and germanium in liquid ammonia in the presence of ethylenediamine or a cryptand. The oxidation states of the element in these ions are not integers—similar to the ozonides O3.

Homoleptic azido compounds are chemical compounds in which the only anion or ligand is the azide group, -N3. The breadth of homoleptic azide compounds spans nearly the entire periodic table. With rare exceptions azido compounds are highly shock sensitive and need to be handled with the upmost caution. Binary azide compounds can take on several different structures including discrete compounds, or one- two, and three-dimensional nets, leading some to dub them as "polyazides". Reactivity studies of azide compounds are relatively limited due to how sensitive they can be. The sensitivity of these compounds tends to be correlated with the amount of ionic or covalent character the azide-element bond has, with ionic character being far more stable than covalent character. Therefore, compounds such as silver or sodium azide – which have strong ionic character – tend to possess more synthetic utility than their covalent counterparts. A few other notable exceptions include polymeric networks which possess unique magnetic properties, group 13 azides which unlike most other azides decompose to nitride compounds (important materials for semiconductors), other limited uses as synthetic reagents for the transfer for azide groups, or interest in high energy density materials.

<span class="mw-page-title-main">Cobalt metagermanate</span> Chemical compound

Cobalt metagermanate is one of the germanates of cobalt, with chemical formula CoGeO3. It is paramagnetic at room temperature and turns antiferromagnetic at or below 32±1 K. It exists in two crystal forms, the orthorhombic and the monoclinic. It can be prepared by the reaction of cobalt(II,III) oxide (or cobalt(II) hydroxide) and germanium dioxide at high temperatures. The chemical vapor phase transfer method can also be used for its preparation.

References

  1. Hirota, Kazushi; Sekine, Toshimori (May 1979). "Phase Relation in the System PbO–PbGeO 3". Bulletin of the Chemical Society of Japan. 52 (5): 1368–1371. doi:10.1246/bcsj.52.1368. ISSN   0009-2673.
  2. Wang, Ning; Ding, Jie; Li, Guicun; Peng, Hongrui (March 2010). "Synthesis and properties of PbGeO 3 nanostructures". Crystal Research and Technology. 45 (3): 316–320. doi:10.1002/crat.200900516. S2CID   97878690.
  3. Lexikon der Chemie: Pyroelektrizität - Lexikon der Chemie Archived (Date missing) at spektrum.de (Error: unknown archive URL), retrieved 27 April 2019.
  4. Jane E. Macintyre (1992), Dictionary of Inorganic Compounds, CRC Press, p. 3315, ISBN   978-0-412-30120-9
  5. Yamaguchi, O.; Sugiura, K.; Muto, M.; Shimizu, K. (June 1985). "Compound formation in the System PbGeO3?Pb5Ge3O11". Zeitschrift für anorganische und allgemeine Chemie (in German). 525 (6): 230–236. doi:10.1002/zaac.19855250627. ISSN   0044-2313.
  6. Issues in Geology and Mineralogy: 2013 Edition, ScholarlyEditions, 2013, p. 593, ISBN   978-1-4901-0960-2