Germanium monosulfide

Last updated
Germanium monosulfide
GeS.png
Names
Systematic IUPAC name
Germanium(II) sulfide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.031.536 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
  • InChI=1S/GeS/c1-2
    Key: VDNSGQQAZRMTCI-UHFFFAOYSA-N
  • S=[Ge]
Properties
GeS
Molar mass 104.69 g·mol−1
Related compounds
Related compounds
Carbon monosulfide

Germanium monoxide
Germanium disulfide

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Germanium monosulfide or Germanium(II) sulfide is the chemical compound with the formula Ge S. It is a chalcogenide glass and a semiconductor. [1] Germanium sulfide is described as a red-brown powder or black crystals. [2] Germanium(II) sulfide when dry is stable in air, hydrolyzes slowly in moist air but rapidly reacts in water forming Ge(OH)2 and then GeO. [3] It is one of a few sulfides that can be sublimed under vacuum without decomposition. [4]

Contents

Preparation

First made by Winkler by reducing GeS2 with Ge. [3] Other methods include reduction in a stream of H2 gas, [3] or with an excess of H3PO2 followed by vacuum sublimation. [2]

Structure

It has a layer structure similar to that of black phosphorus. [2] The Ge-S distances range from 247 to 300 pm. [3] Molecular GeS in the gas phase has a Ge-S bond length of 201.21 pm. [5]

Related Research Articles

<span class="mw-page-title-main">Germanium</span> Chemical element, symbol Ge and atomic number 32

Germanium is a chemical element; it has symbol Ge and atomic number 32. It is lustrous, hard-brittle, grayish-white and similar in appearance to silicon. It is a metalloid in the carbon group that is chemically similar to its group neighbors silicon and tin. Like silicon, germanium naturally reacts and forms complexes with oxygen in nature.

<span class="mw-page-title-main">Indium</span> Chemical element, symbol In and atomic number 49

Indium is a chemical element; it has symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are largely intermediate between the two. It was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods and named for the indigo blue line in its spectrum.

A metalloid is a type of chemical element which has a preponderance of properties in between, or that are a mixture of, those of metals and nonmetals. There is no standard definition of a metalloid and no complete agreement on which elements are metalloids. Despite the lack of specificity, the term remains in use in the literature of chemistry.

<span class="mw-page-title-main">Nonmetal</span> Chemical element that mostly lacks the characteristics of a metal

A nonmetal is a chemical element that mostly lacks metallic properties. Seventeen elements are generally considered nonmetals, though some authors recognize more or fewer depending on the properties considered most representative of metallic or nonmetallic character. Some borderline elements further complicate the situation.

<span class="mw-page-title-main">Group 12 element</span> Group of chemical elements

Group 12, by modern IUPAC numbering, is a group of chemical elements in the periodic table. It includes zinc (Zn), cadmium (Cd), mercury (Hg), and copernicium (Cn). Formerly this group was named IIB by CAS and old IUPAC system.

<span class="mw-page-title-main">Silver sulfide</span> Chemical compound

Silver sulfide is an inorganic compound with the formula Ag
2
S
. A dense black solid, it is the only sulfide of silver. It is useful as a photosensitizer in photography. It constitutes the tarnish that forms over time on silverware and other silver objects. Silver sulfide is insoluble in most solvents, but is degraded by strong acids. Silver sulfide is a network solid made up of silver and sulfur where the bonds have low ionic character.

<span class="mw-page-title-main">Tungsten hexafluoride</span> Chemical compound

Tungsten(VI) fluoride, also known as tungsten hexafluoride, is an inorganic compound with the formula WF6. It is a toxic, corrosive, colorless gas, with a density of about 13 kg/m3 (22 lb/cu yd). It is one of the densest known gases under standard conditions. WF6 is commonly used by the semiconductor industry to form tungsten films, through the process of chemical vapor deposition. This layer is used in a low-resistivity metallic "interconnect". It is one of seventeen known binary hexafluorides.

<span class="mw-page-title-main">Mercury sulfide</span> Chemical compound

Mercury sulfide, or mercury(II) sulfide is a chemical compound composed of the chemical elements mercury and sulfur. It is represented by the chemical formula HgS. It is virtually insoluble in water.

<span class="mw-page-title-main">Germanium tetrachloride</span> Chemical compound

Germanium tetrachloride is a colourless, fuming liquid with a peculiar, acidic odour. It is used as an intermediate in the production of purified germanium metal. In recent years, GeCl4 usage has increased substantially due to its use as a reagent for fiber optic production.

<span class="mw-page-title-main">Germane</span> Chemical compound

Germane is the chemical compound with the formula GeH4, and the germanium analogue of methane. It is the simplest germanium hydride and one of the most useful compounds of germanium. Like the related compounds silane and methane, germane is tetrahedral. It burns in air to produce GeO2 and water. Germane is a group 14 hydride.

Germanium dioxide, also called germanium(IV) oxide, germania, and salt of germanium, is an inorganic compound with the chemical formula GeO2. It is the main commercial source of germanium. It also forms as a passivation layer on pure germanium in contact with atmospheric oxygen.

<span class="mw-page-title-main">Gallium trichloride</span> Chemical compound

Gallium trichloride is the chemical compound with the formula GaCl3. Solid gallium trichloride exists as a dimer with the formula Ga2Cl6. It is colourless and soluble in virtually all solvents, even alkanes, which is truly unusual for a metal halide. It is the main precursor to most derivatives of gallium and a reagent in organic synthesis.

Germanium iodides are inorganic compound with the formula GeIx. Two such compounds exist: germanium(II) iodide, GeI2, and germanium(IV) iodide GeI4.

<span class="mw-page-title-main">Germanium dichloride</span> Chemical compound

Germanium dichloride is a chemical compound of germanium and chlorine with the formula GeCl2. It is a yellow solid. Germanium dichloride is an example of a compound featuring germanium in the +2 oxidation state.

<span class="mw-page-title-main">Germanium tetrafluoride</span> Chemical compound

Germanium tetrafluoride (GeF4) is a chemical compound of germanium and fluorine. It is a colorless gas.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

<span class="mw-page-title-main">Germanium(II) iodide</span> Chemical compound

Germanium(II) iodide is an iodide of germanium, with the chemical formula of GeI2.

<span class="mw-page-title-main">Silicon monosulfide</span> Chemical compound

Silicon monosulfide is a chemical compound of silicon and sulfur. The chemical formula is SiS. Molecular SiS has been detected at high temperature in the gas phase. The gas phase molecule has an Si-S bondlength of 192.93 pm, this compares to the normal single bond length of 216 pm, and is shorter than the Si=S bond length of around 201 pm reported in an organosilanethione. Historically a pale yellow-red amorphous solid compound has been reported. The behavior of silicon can be contrasted with germanium which forms a stable solid monosulfide.

<span class="mw-page-title-main">Digermane</span> Chemical compound

Digermane is an inorganic compound with the chemical formula Ge2H6. One of the few hydrides of germanium, it is a colourless liquid. Its molecular geometry is similar to ethane.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

References

  1. Sutter, Eli; Zhang, Bo; Sun, Muhua; Sutter, Peter (2019-08-27). "Few-Layer to Multilayer Germanium(II) Sulfide: Synthesis, Structure, Stability, and Optoelectronics". ACS Nano. 13 (8): 9352–9362. doi:10.1021/acsnano.9b03986. ISSN   1936-0851. PMID   31305983.
  2. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  3. 1 2 3 4 E. G. Rochow, E. W. Abel ,1973, The Chemistry of Germanium Tin and Lead, Pergamon Press, ISBN   0-08-018854-0
  4. Michael Binnewies, Robert Glaum, Marcus Schmidt, Peer Schmidt, 2012, Chemical Vapor Transport Reactions, De Gruyter, ISBN   978-3-11-025464-8
  5. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN   0-8493-0487-3.