Ammonium hydrosulfide

Last updated
Ammonium hydrosulfide
Ammonium-2D.svg
Hydrogen sulfide ion.svg
Ammonium-hydrosulfide-3D-vdW.png
Names
IUPAC name
ammonium hydrosulfide
Other names
ammonium bisulfide
ammonium hydrogen sulfide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.974 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-184-3
PubChem CID
RTECS number
  • BS4900000
UNII
UN number 2683
  • InChI=1S/H3N.H2S/h1H3;1H2 Yes check.svgY
    Key: HIVLDXAAFGCOFU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/H3N.H2S/h1H3;1H2
    Key: HIVLDXAAFGCOFU-UHFFFAOYAU
  • [SH-].[NH4+]
Properties
[NH4]SH
Molar mass 51.111 g/mol
AppearanceYellow-orange fuming liquid (in solution). White rhombic crystals (anhydrous). [1]
Density 1.17 g/cm3 [1] [2]
Boiling point 56.6 °C (133.9 °F; 329.8 K)
Miscible
Solubility soluble in alcohol, liquid ammonia, liquid hydrogen sulfide; insoluble in benzene, hexane and ether
1.74
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Toxic
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-pollu.svg
Danger
H314, H400.
P260, P264, P273, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P391, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 3: Short exposure could cause serious temporary or residual injury. E.g. chlorine gasFlammability 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g. gasolineInstability (yellow): no hazard codeSpecial hazards (white): no code
3
3
Lethal dose or concentration (LD, LC):
168 mg/kg (rat, oral) [3]
Related compounds
Other anions
Ammonia solution
Other cations
Sodium hydrosulfide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium hydrosulfide is the chemical compound with the formula [NH4]SH.

Contents

Composition

It is the salt derived from the ammonium cation and the hydrosulfide anion. The salt exists as colourless, water-soluble, micaceous crystals. On Earth the compound is encountered mainly as a solution, not as the solid, but [NH4]SH ice is believed to be a substantial component of the cloud decks of the gas-giant planets Jupiter and Saturn, with sulfur produced by its photolysis responsible for the color of some of those planets' clouds. It can be generated by mixing hydrogen sulfide and ammonia.

Preparation

Solutions of ammonium hydrosulfide can be prepared by passing hydrogen sulfide gas through concentrated ammonia solution. [4] According to a detailed 1895 report, hydrogen sulfide reacts with concentrated aqueous ammonia solution at room temperature to give [NH4]2S·2[NH4]SH. When this species is cooled to 0 °C and treated with additional hydrogen sulfide, one obtains [NH4]2S·12[NH4]SH. [5] An ice-cold solution of this substance kept at 0 °C and having hydrogen sulfide continually passed through it gives the hydrosulfide.

The common "stink bomb" consists of an aqueous solution of ammonium sulfide. The mixture easily converts to ammonia and hydrogen sulfide gases. This conversion illustrates the ease of the following equilibrium:

[NH4]SH ⇌ NH3 + H2S

Ammonia and hydrogen sulfide each have a powerful and unpleasant smell.

Solid ammonium hydrosulfide can be produced by reacting an equimolar mixture of ammonia and hydrogen sulfide under -18 °C: [6]

NH3 + H2S → NH4SH

"Ammonium sulfide"

A bottle of ammonium sulfide solution Ammonium sulfide008.jpg
A bottle of ammonium sulfide solution

Aqueous solutions of ammonium sulfide (CAS registry number 12135-76-1 ), also known as diammonium sulfide are commercially available, although the composition of these solutions is uncertain as they could consist of a mixture of ammonia and [NH4]SH. Ammonium sulfide solutions are used occasionally in photographic developing, to apply patina to bronze, and in textile manufacturing. It can be used as a selective reducing agent (cf. 2,4-dinitrochlorobenzene); where there are two nitro groups, only one of them is selectively reduced.

The 1990–91 CRC Handbook of Chemistry and Physics gives information for anhydrous ammonium monosulfide ([NH4]2S) and ammonium pentasulfide ([NH4]2S5) as separate from anhydrous ammonium hydrosulfide ([NH4]SH), describing the former two both as yellow crystalline substances that are soluble in cold water and alcohol, and which both decompose in hot water or at high temperature in general (115 °C for the pentasulfide), but the latter as a white crystalline solid (which also decomposes in hot water). [1] Thus, it seems that solid ammonium sulfide can be distinct from solid ammonium hydrosulfide, even if this is not true in aqueous solution.

Related Research Articles

<span class="mw-page-title-main">Sodium carbonate</span> Chemical compound

Sodium carbonate is the inorganic compound with the formula Na2CO3 and its various hydrates. All forms are white, odourless, water-soluble salts that yield alkaline solutions in water. Historically, it was extracted from the ashes of plants grown in sodium-rich soils, and because the ashes of these sodium-rich plants were noticeably different from ashes of wood, sodium carbonate became known as "soda ash". It is produced in large quantities from sodium chloride and limestone by the Solvay process, as well as by carbonating sodium hydroxide which is made using the Chlor-alkali process.

<span class="mw-page-title-main">Zinc chloride</span> Chemical compound

Zinc chloride is the name of inorganic chemical compounds with the formula ZnCl2·nH2O, with x ranging from 0 to 4.5, forming hydrates. Zinc chloride, anhydrous and its hydrates are colorless or white crystalline solids, and are highly soluble in water. Five hydrates of zinc chloride are known, as well as four forms of anhydrous zinc chloride. This salt is hygroscopic and even deliquescent. Zinc chloride finds wide application in textile processing, metallurgical fluxes, and chemical synthesis. No mineral with this chemical composition is known aside from the very rare mineral simonkolleite, Zn5(OH)8Cl2·H2O.

<span class="mw-page-title-main">Bisulfide</span> Inorganic anion containing one sulfur and one hydrogen atoms

Bisulfide is an inorganic anion with the chemical formula HS. It contributes no color to bisulfide salts, and its salts may have a distinctive putrid smell. It is a strong base. Bisulfide solutions are corrosive and attack the skin.

<span class="mw-page-title-main">Ammonium carbonate</span> Chemical used as leavening agent and smelling salt

Ammonium carbonate is a salt with the chemical formula (NH4)2CO3. Since it readily degrades to gaseous ammonia and carbon dioxide upon heating, it is used as a leavening agent and also as smelling salt. It is also known as baker's ammonia and is a predecessor to the more modern leavening agents baking soda and baking powder. It is a component of what was formerly known as sal volatile and salt of hartshorn, and produces a pungent smell when baked. It comes in the form of a white powder or block, with a molar mass of 96.09 g/mol and a density of 1.50 g/cm3. It is a strong electrolyte.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Europium(III) chloride</span> Chemical compound

Europium(III) chloride is an inorganic compound with the formula EuCl3. The anhydrous compound is a yellow solid. Being hygroscopic it rapidly absorbs water to form a white crystalline hexahydrate, EuCl3·6H2O, which is colourless. The compound is used in research.

<span class="mw-page-title-main">Ammonium sulfate</span> Chemical compound

Ammonium sulfate (American English and international scientific usage; ammonium sulphate in British English); (NH4)2SO4, is an inorganic salt with a number of commercial uses. The most common use is as a soil fertilizer. It contains 21% nitrogen and 24% sulfur.

<span class="mw-page-title-main">Ammonium phosphate</span> Chemical compound

Ammonium phosphate is the inorganic compound with the formula (NH4)3PO4. It is the ammonium salt of orthophosphoric acid. A related "double salt", (NH4)3PO4.(NH4)2HPO4 is also recognized but is impractical to use. Both triammonium salts evolve ammonia. In contrast to the unstable nature of the triammonium salts, the diammonium phosphate (NH4)2HPO4 and monoammonium salt (NH4)H2PO4 are stable materials that are commonly used as fertilizers to provide plants with fixed nitrogen and phosphorus.

<span class="mw-page-title-main">Sodium sulfide</span> Chemical compound

Sodium sulfide is a chemical compound with the formula Na2S, or more commonly its hydrate Na2S·9H2O. Both the anhydrous and the hydrated salts in pure crystalline form are colorless solids, although technical grades of sodium sulfide are generally yellow to brick red owing to the presence of polysulfides and commonly supplied as a crystalline mass, in flake form, or as a fused solid. They are water-soluble, giving strongly alkaline solutions. When exposed to moist air, Na2S and its hydrates emit hydrogen sulfide, an extremely toxic, flammable and corrosive gas which smells like rotten eggs.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Sodium hydrosulfide</span> Chemical compound

Sodium hydrosulfide is the chemical compound with the formula NaSH. This compound is the product of the half-neutralization of hydrogen sulfide with sodium hydroxide (NaOH). NaSH and sodium sulfide are used industrially, often for similar purposes. Solid NaSH is colorless. The solid has an odor of H2S owing to hydrolysis by atmospheric moisture. In contrast with sodium sulfide, which is insoluble in organic solvents, NaSH, being a 1:1 electrolyte, is more soluble.

Thiosulfuric acid is the inorganic compound with the formula H2S2O3. It has attracted academic interest as a simple, easily accessed compound that is labile. It has few practical uses.

<span class="mw-page-title-main">Ammonium cyanide</span> Chemical compound

Ammonium cyanide is an unstable inorganic compound with the formula NH4CN.

<span class="mw-page-title-main">Ammonium thiocyanate</span> Chemical compound

Ammonium thiocyanate is an inorganic compound with the formula [NH4]+[SCN]. It is an ammonium salt of thiocyanic acid. It consists of ammonium cations [NH4]+ and thiocyanate anions [SCN].

<span class="mw-page-title-main">Potassium hydrosulfide</span> Chemical compound

Potassium hydrosulfide is the inorganic compound with the formula KSH. This colourless salt consists of the cation K+ and the bisulfide anion [SH]. It is the product of the half-neutralization of hydrogen sulfide with potassium hydroxide. The compound is used in the synthesis of some organosulfur compounds. Aqueous solutions of potassium sulfide consist of a mixture of potassium hydrosulfide and potassium hydroxide.

Ammonium orthomolybdate is the inorganic compound with the chemical formula (NH4)2MoO4. It is a white solid that is prepared by treating molybdenum trioxide with aqueous ammonia. Upon heating these solutions, ammonia is lost, to give ammonium heptamolybdate ((NH4)6Mo7O24·4H2O).

<span class="mw-page-title-main">Sodium polysulfide</span> Chemical compound

Sodium polysulfide is a general term for salts with the formula Na2Sx, where x = 2 to 5. The species Sx2−, called polysulfide anions, include disulfide (S22−), trisulfide (S32−), tetrasulfide (S42−), and pentasulfide (S52−). In principle, but not in practice, the chain lengths could be longer. The salts are dark red solids that dissolve in water to give highly alkaline and corrosive solutions. In air, these salts oxidize, and they evolve hydrogen sulfide by hydrolysis.

<span class="mw-page-title-main">Ammonium carbamate</span> Chemical compound

Ammonium carbamate is a chemical compound with the formula [NH4][H2NCO2] consisting of ammonium cation NH+4 and carbamate anion NH2COO. It is a white solid that is extremely soluble in water, less so in alcohol. Ammonium carbamate can be formed by the reaction of ammonia NH3 with carbon dioxide CO2, and will slowly decompose to those gases at ordinary temperatures and pressures. It is an intermediate in the industrial synthesis of urea (NH2)2CO, an important fertilizer.

Polonium sulfide is an inorganic compound of polonium and sulfur with the chemical formula PoS. The compound is radioactive and forms black crystals.

References

  1. 1 2 3 Lide, David R., ed. (1990). "Physical Constants of Inorganic Compounds". CRC Handbook of Chemistry and Physics (71st ed.). CRC Press, inc. p. 4-45.
  2. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8
  3. Record of ammonium hydrosulfide in the GESTIS Substance Database of the Institute for Occupational Safety and Health, accessed on October 22, 2010.
  4. Goodman, J. T.; Rauchfuss, T. B. (2002). Tetraethylammonium-tetrathioperrhenate [Et4N][ReS4]. Inorganic Syntheses. Vol. 33. pp. 107–110. doi:10.1002/0471224502.ch2.
  5. W. P. Bloxam (1895). "The Sulphides and Polysulphides of Ammonium". J. Chem. Soc., Trans. 67: 283. doi:10.1039/CT8956700277.
  6. C. D. West (1934). "The Crystal Structures of Some Alkali Hydrosulfides and Monosulfides". Zeitschrift für Kristallographie - Crystalline Materials. 88 (1–6): 97–115. doi:10.1524/zkri.1934.88.1.97.