Ammonium bromide

Last updated
Ammonium bromide
Ammonium bromide.svg
Ammonium-bromide-3D-balls.png
Names
IUPAC name
Ammonium bromide
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.031.973 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 235-183-8
PubChem CID
RTECS number
  • BO9155000liugoiugiu
UNII
  • InChI=1S/BrH.H3N/h1H;1H3 Yes check.svgY
    Key: SWLVFNYSXGMGBS-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/BrH.H3N/h1H;1H3
    Key: SWLVFNYSXGMGBS-UHFFFAOYAP
  • [Br-].[NH4+]
Properties
NH4Br
Molar mass 97.94 g/mol
Appearancewhite powder, hygroscopic
Density 2.429 g/cm3
Melting point 235 °C (455 °F; 508 K)
Boiling point 452 °C (846 °F; 725 K)
60.6 g/100 mL (0 °C)
78.3 g/100 mL (25 °C)
145 g/100 mL (100 °C)
−47.0×10−6 cm3/mol
1.712
Structure
Isometric
Hazards
GHS labelling:
GHS-pictogram-exclam.svg [1]
Warning
H315, H319, H335 [1]
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Related compounds
Other anions
Ammonium fluoride
Ammonium chloride
Ammonium iodide
Other cations
Sodium bromide
Potassium bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Ammonium bromide, NH4Br, is the ammonium salt of hydrobromic acid. The chemical crystallizes in colorless prisms, possessing a saline taste; it sublimes on heating and is easily soluble in water. On exposure to air it gradually assumes a yellow color because of the oxidation of traces of bromide (Br) to bromine (Br2).

Contents

Preparation

Ammonium bromide can be prepared by the direct action of hydrogen bromide on ammonia.

NH3 + HBr → NH4Br

It can also be prepared by the reaction of ammonia with iron(II) bromide or iron(III) bromide, which may be obtained by passing aqueous bromine solution over iron filings.

2 NH3 + FeBr2 + 2 H2O → 2 NH4Br + Fe(OH)2

Reactions

Ammonium bromide is a weak acid with a pKa of approximately 5 in water. It is an acid salt because the ammonium ion hydrolyzes slightly in water.

Ammonium bromide is a strong electrolyte when put in water:

NH4Br(s) → NH+4(aq) + Br(aq)

Ammonium bromide decomposes to ammonia and hydrogen bromide when heated at elevated temperatures:

NH4Br → NH3 + HBr

Uses

Ammonium bromide is used for photography in films, plates and papers; in fireproofing of wood; in lithography and process engraving; in corrosion inhibitors; and in pharmaceutical preparations. [2]

Related Research Articles

<span class="mw-page-title-main">Acid</span> Chemical compound giving a proton or accepting an electron pair

An acid is a molecule or ion capable of either donating a proton (i.e. hydrogen ion, H+), known as a Brønsted–Lowry acid, or forming a covalent bond with an electron pair, known as a Lewis acid.

<span class="mw-page-title-main">Acid–base reaction</span> Chemical reaction

An acid–base reaction is a chemical reaction that occurs between an acid and a base. It can be used to determine pH via titration. Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.

<span class="mw-page-title-main">Bromine</span> Chemical element, symbol Br and atomic number 35

Bromine is a chemical element with the symbol Br and atomic number 35. It is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος (bromos) meaning "stench", referring to its sharp and pungent smell.

<span class="mw-page-title-main">Halogen</span> Group of chemical elements

The halogens are a group in the periodic table consisting of six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts), though some authors would exclude tennessine as its chemistry is unknown and is theoretically expected to be more like that of gallium. In the modern IUPAC nomenclature, this group is known as group (XVII) or group (VII).

<span class="mw-page-title-main">Ammonium</span> Polyatomic ion (NH₄, charge +1)

The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+4 or [NH4]+. It is formed by the protonation of ammonia. Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic or other groups.

Hydrobromic acid is a strong acid formed by dissolving the diatomic molecule hydrogen bromide (HBr) in water. "Constant boiling" hydrobromic acid is an aqueous solution that distills at 124.3 °C (255.7 °F) and contains 47.6% HBr by mass, which is 8.77 mol/L. Hydrobromic acid has a pKa of −9, making it a stronger acid than hydrochloric acid, but not as strong as hydroiodic acid. Hydrobromic acid is one of the strongest mineral acids known.

<span class="mw-page-title-main">Hydrogen bromide</span> Chemical compound

Hydrogen bromide is the inorganic compound with the formula HBr. It is a hydrogen halide consisting of hydrogen and bromine. A colorless gas, it dissolves in water, forming hydrobromic acid, which is saturated at 68.85% HBr by weight at room temperature. Aqueous solutions that are 47.6% HBr by mass form a constant-boiling azeotrope mixture that boils at 124.3 °C. Boiling less concentrated solutions releases H2O until the constant-boiling mixture composition is reached.

Classical qualitative inorganic analysis is a method of analytical chemistry which seeks to find the elemental composition of inorganic compounds. It is mainly focused on detecting ions in an aqueous solution, therefore materials in other forms may need to be brought to this state before using standard methods. The solution is then treated with various reagents to test for reactions characteristic of certain ions, which may cause color change, precipitation and other visible changes.

<span class="mw-page-title-main">Single displacement reaction</span> Type of chemical reaction

A single-displacement reaction, also known as single replacement reaction or exchange reaction, is a chemical reaction in which one element is replaced by another in a compound.

A bromide ion is the negatively charged form (Br) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. Although uncommon, chronic toxicity from bromide can result in bromism, a syndrome with multiple neurological symptoms. Bromide toxicity can also cause a type of skin eruption, see potassium bromide. The bromide ion has an ionic radius of 196 pm.

<span class="mw-page-title-main">Lithium bromide</span> Chemical compound

Lithium bromide (LiBr) is a chemical compound of lithium and bromine. Its extreme hygroscopic character makes LiBr useful as a desiccant in certain air conditioning systems.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

<span class="mw-page-title-main">Hypobromous acid</span> Chemical compound

Hypobromous acid is a weak, unstable acid with chemical formula of HOBr. It is mainly produced and handled in an aqueous solution. It is generated both biologically and commercially as a disinfectant. Salts of hypobromite are rarely isolated as solids.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

<span class="mw-page-title-main">Cobalt(II) bromide</span> Chemical compound

Cobalt(II) bromide (CoBr2) is an inorganic compound. In its anhydrous form, it is a green solid that is soluble in water, used primarily as a catalyst in some processes.

Organobromine chemistry is the study of the synthesis and properties of organobromine compounds, also called organobromides, which are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane.

<span class="mw-page-title-main">Ammonium cyanide</span> Chemical compound

Ammonium cyanide is an unstable inorganic compound with the formula NH4CN.

<span class="mw-page-title-main">Ammonium thiocyanate</span> Chemical compound

Ammonium thiocyanate is an inorganic compound with the formula NH4SCN. It is the salt of the ammonium cation and the thiocyanate anion.

In chemistry, a fatty amine is loosely defined as any amine possessing a mostly linear hydrocarbon chain of eight or more carbon atoms. They are typically prepared from the more abundant fatty acids, with vegetable or seed-oils being the ultimate starting material. As such they are often mixtures of chain lengths, ranging up to about C22. They can be classified as oleochemicals. Commercially important members include coco amine, oleylamine, tallow amine, and soya amine. These compounds and their derivatives are used as fabric softeners, froth flotation agents, corrosion inhibitors, lubricants and friction modifiers. They are also the basis for a variety of cosmetic formulations.

References

  1. 1 2 Sigma-Aldrich Co., Ammonium bromide.
  2. Pradyot Patnaik. Handbook of Inorganic Chemicals. McGraw-Hill, 2002, ISBN   0-07-049439-8