Indium(III) bromide

Last updated
Indium tribromide [1]
Aluminium-trichloride-crystal-3D-balls.png
Names
IUPAC name
Indium(III) bromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.033.343 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 236-692-8
PubChem CID
UNII
  • InChI=1S/3BrH.In/h3*1H;/q;;;+3/p-3
    Key: JKNHZOAONLKYQL-UHFFFAOYSA-K
  • Br[In](Br)Br
Properties
InBr3
Molar mass 354.530 g/mol
Appearance hygroscopic yellow-white monoclinic crystals
Density 4.74 g/cm3
Melting point 420 °C (788 °F; 693 K)
414 g/100 mL at 20 °C
107.0·10−6 cm3/mol
Structure
Monoclinic, mS16
C12/m1, No. 12
Thermochemistry
-428.9 kJ·mol−1
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H314, H315, H319, H335
P260, P261, P264, P271, P280, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P332+P313, P337+P313, P362, P363, P403+P233, P405, P501
Related compounds
Other cations
indium(III) fluoride
indium(III) chloride
indium(III) iodide
Related compounds
Indium(I) bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Indium(III) bromide, (indium tribromide), InBr3, is a chemical compound of indium and bromine. It is a Lewis acid and has been used in organic synthesis. [2]

Contents

Structure

It has the same crystal structure as aluminium trichloride, with 6 coordinate indium atoms. [3] When molten it is dimeric, In2Br6, and it is predominantly dimeric in the gas phase. The dimer has bridging bromine atoms with a structure similar to dimeric aluminium trichloride Al2Cl6. [3]

Preparation and reactions

It is formed by the reaction of indium and bromine. [4] InBr3 forms complexes with ligands, L, InBr3L, InBr3L2, InBr3L3. [3]

Reaction with indium metal forms lower valent indium bromides, InBr2, In4Br7, In2Br3, In5Br7, In7Br9, indium(I) bromide. [5] [6] [7] [8] In refluxing xylene solution InBr3 and In metal react to form InBr2. [9]

Related Research Articles

<span class="mw-page-title-main">Aluminium bromide</span> Chemical compound

Aluminium bromide is any chemical compound with the empirical formula AlBrx. Aluminium tribromide is the most common form of aluminium bromide. It is a colorless, sublimable hygroscopic solid; hence old samples tend to be hydrated, mostly as aluminium tribromide hexahydrate (AlBr3·6H2O).

<span class="mw-page-title-main">Gold(III) bromide</span> Chemical compound

Gold(III) bromide is a dark-red to black crystalline solid. It has the empirical formula AuBr3, but exists primarily as a dimer with the molecular formula Au2Br6 in which two gold atoms are bridged by two bromine atoms. It is commonly referred to as gold(III) bromide, gold tribromide, and rarely but traditionally auric bromide, and sometimes as digold hexabromide. As is similar with the other gold halides, this compound is unique for being a coordination complex of a group 11 transition metal that is stable in an oxidation state of +3 whereas copper or silver complexes persist in oxidation states of +1 or +2.

<span class="mw-page-title-main">Gallium(III) bromide</span> Chemical compound

Gallium(III) bromide (GaBr3) is a chemical compound, and one of four gallium trihalides.

There are three sets of Indium halides, the trihalides, the monohalides, and several intermediate halides. In the monohalides the oxidation state of indium is +1 and their proper names are indium(I) fluoride, indium(I) chloride, indium(I) bromide and indium(I) iodide.

<span class="mw-page-title-main">Bromopentacarbonylrhenium(I)</span> Chemical compound

Bromopentacarbonylrhenium(I) is an inorganic compound of rhenium, commonly used for the syntheses of other rhenium complexes.

<span class="mw-page-title-main">Bismuth tribromide</span> Chemical compound

Bismuth tribromide is an inorganic compound of bismuth and bromine with the chemical formula BiBr3.

Scandium bromide, or ScBr3, is a trihalide, hygroscopic, water-soluble chemical compound of scandium and bromine.

The nitridoborates are chemical compounds of boron and nitrogen with metals. These compounds are typically produced at high temperature by reacting hexagonal boron nitride with metal nitrides or by metathesis reactions involving nitridoborates. A wide range of these compounds have been made involving lithium, alkaline earth metals and lanthanides, and their structures determined using crystallographic techniques such as X-ray crystallography. Structurally one of their interesting features is the presence of polyatomic anions of boron and nitrogen where the geometry and the B–N bond length have been interpreted in terms of π-bonding.

<span class="mw-page-title-main">Niobium pentaiodide</span> Chemical compound

Niobium pentaiodide is the inorganic compound with the formula Nb2I10. Its name comes from the compound's empirical formula, NbI5. It is a diamagnetic, yellow solid that hydrolyses readily. The compound adopts an edge-shared bioctahedral structure, which means that two NbI5 units are joined by a pair of iodide bridges. There is no bond between the Nb centres. Niobium(V) chloride, niobium(V) bromide, tantalum(V) chloride, tantalum(V) bromide, and tantalum(V) iodide, all share this structural motif.

<span class="mw-page-title-main">Neodymium(III) bromide</span> Chemical compound

Neodymium(III) bromide is an inorganic salt of bromine and neodymium the formula NdBr3. The anhydrous compound is an off-white to pale green solid at room temperature, with an orthorhombic PuBr3-type crystal structure. The material is hygroscopic and forms a hexahydrate in water (NdBr3· 6H2O), similar to the related neodymium(III) chloride.

<span class="mw-page-title-main">Titanium(II) bromide</span> Chemical compound

Titanium(II) bromide is the inorganic compound with the formula TiBr2. It is a black micaceous solid. It adopts the cadmium iodide structure, featuring octahedral Ti(II) centers. It arises via the reaction of the elements:

<span class="mw-page-title-main">Ruthenium(III) bromide</span> Chemical compound

Ruthenium(III) bromide is a chemical compound of ruthenium and bromine with the formula RuBr3. It is a dark brown solid that decomposes above 400 °C.

Arsenide bromides or bromide arsenides are compounds containing anions composed of bromide (Br) and arsenide (As3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the arsenide chlorides, arsenide iodides, phosphide bromides, and antimonide bromides.

Antimonide bromides or bromide antimonides are compounds containing anions composed of bromide (Br) and antimonide (Sb3−). They can be considered as mixed anion compounds. They are in the category of pnictidehalides. Related compounds include the antimonide chlorides, antimonide iodides, arsenide chlorides, arsenide bromides, arsenide iodides, phosphide chlorides, phosphide bromides, and phosphide iodides. The bromoantimonates have antimony in positive oxidation states.

Carbide chlorides are mixed anion compounds containing chloride anions and anions consisting entirely of carbon. In these compounds there is no bond between chlorine and carbon. But there is a bond between a metal and carbon. Many of these compounds are cluster compounds, in which metal atoms encase a carbon core, with chlorine atoms surrounding the cluster. The chlorine may be shared between clusters to form polymers or layers. Most carbide chloride compounds contain rare earth elements. Some are known from group 4 elements. The hexatungsten carbon cluster can be oxidised and reduced, and so have different numbers of chlorine atoms included.

Carbide bromides are mixed anion compounds containing bromide and carbide anions. Many carbide bromides are cluster compounds, containing on, two or more carbon atoms in a core, surrounded by a layer of metal atoms, encased in a shell of bromide ions. These ions may be shared between clusters to form chains, double chains or layers.

Carbide iodides are mixed anion compounds containing iodide and carbide anions. Many carbide iodides are cluster compounds, containing one, two or more carbon atoms in a core, surrounded by a layer of metal atoms, and encased in a shell of iodide ions. These ions may be shared between clusters to form chains, double chains or layers.

<span class="mw-page-title-main">Dysprosium(III) bromide</span> Chemical compound

Dysprosium(III) bromide is an inorganic compound of bromine and dysprosium, with the chemical formula of DyBr3.

<span class="mw-page-title-main">Thulium dibromide</span> Chemical compound

Thulium dibromide is an inorganic compound, with the chemical formula of TmBr2. It is a dark green solid that is easy to dissolve, with the SrI2 structure and it needs to be stored in an inert atmosphere.

<span class="mw-page-title-main">Tungsten hexabromide</span> Chemical compound

Tungsten hexabromide, also known as tungsten(VI) bromide, is a chemical compound of tungsten and bromine with the formula WBr6. It is an air-sensitive dark grey powder that decomposes above 200 °C to tungsten(V) bromide and bromine.

References

  1. Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–61, ISBN   0-8493-0594-2
  2. Thirupathi, Ponnaboina; Kim, Sung Soo (2009). "InBr3: A Versatile Catalyst for the Different Types of Friedel−Crafts Reactions". The Journal of Organic Chemistry. 74 (20): 7755–7761. doi:10.1021/jo9014613. ISSN   0022-3263. PMID   19813765.
  3. 1 2 3 "Indium: Inorganic chemistry", D.G Tuck, Encyclopedia of Inorganic Chemistry Editor R Bruce King (1994) John Wiley and Sons ISBN   0-471-93620-0
  4. Egon Wiberg, Arnold Frederick Holleman (2001) Inorganic Chemistry, Elsevier ISBN   0123526515
  5. Staffel, Thomas; Meyer, Gerd (1987). "The mono-, sesqui-, and dibromides of indium: InBr, In2Br3, and InBr2". Zeitschrift für anorganische und allgemeine Chemie. 552 (9): 113–122. doi:10.1002/zaac.19875520913. ISSN   0044-2313.
  6. Ruck, Michael; Bärnighausen, Hartmut (1999). "Zur Polymorphie von In5Br7". Zeitschrift für anorganische und allgemeine Chemie. 625 (4): 577–585. doi:10.1002/(SICI)1521-3749(199904)625:4<577::AID-ZAAC577>3.0.CO;2-B. ISSN   0044-2313.
  7. Dronskowski, R. (1995). "The crystal structure of In7Br9". Zeitschrift für Kristallographie. 210 (12): 920–923. doi:10.1524/zkri.1995.210.12.920. ISSN   0044-2968.
  8. Stephenson, NC; Mellor, DP (1950). "The Crystal Structure of Indium Monobromide". Australian Journal of Chemistry. 3 (4): 581. doi:10.1071/CH9500581. ISSN   0004-9425.
  9. Freeland, B. H.; Tuck, D. G. (1976). "Facile synthesis of the lower halides of indium". Inorganic Chemistry. 15 (2): 475–476. doi:10.1021/ic50156a050. ISSN   0020-1669.