Bromine trifluoride

Last updated
Bromine trifluoride
BrF3Structure.png
Bromine-trifluoride-3D-vdW.png
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.211 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-132-1
PubChem CID
UNII
UN number 1746
  • InChI=1S/BrF3/c2-1(3)4
    Key: FQFKTKUFHWNTBN-UHFFFAOYSA-N
  • FBr(F)F
Properties
BrF3
Molar mass 136.90 g/mol
Appearancestraw-coloured liquid
hygroscopic
Odor Choking, pungent [1]
Density 2.803 g/cm3 [2]
Melting point 8.77 °C (47.79 °F; 281.92 K)
Boiling point 125.72 °C (258.30 °F; 398.87 K)
Reacts with water [3]
Structure
T-shaped (C2v)
1.19 D
Hazards [4]
Occupational safety and health (OHS/OSH):
Main hazards
Reacts violently with water to release HF, highly toxic, corrosive, powerful oxidizer
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg GHS-pictogram-skull.svg GHS-pictogram-silhouette.svg
Danger
H271, H300+H310+H330, H314, H373
P102, P103, P210, P220, P221, P260, P264, P271, P280, P283, P284, P301+P310, P301+P330+P331, P303+P361+P353, P304+P312, P305+P351+P338+P310, P306+P360, P308+P313, P340, P363, P370+P380
NFPA 704 (fire diamond)
4
0
4
W
OX
Safety data sheet (SDS) http://www.chammascutters.com/en/downloads/Bromine-Trifluoride-MSDS.pdf
Related compounds
Other anions
Bromine monochloride
Other cations
Chlorine trifluoride
Iodine trifluoride
Related compounds
Bromine monofluoride
Bromine pentafluoride
Supplementary data page
Bromine trifluoride (data page)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Bromine trifluoride is an interhalogen compound with the formula BrF3. At room temperature, it is a straw-coloured liquid with a pungent odor [5] which decomposes violently on contact with water and organic compounds. It is a powerful fluorinating agent and an ionizing inorganic solvent. It is used to produce uranium hexafluoride (UF6) in the processing and reprocessing of nuclear fuel. [6]

Contents

Synthesis

Bromine trifluoride was first described by Paul Lebeau in 1906, who obtained the material by the reaction of bromine with fluorine at 20 °C: [7]

Br2 + 3 F2 → 2 BrF3

The disproportionation of bromine monofluoride also gives bromine trifluoride: [5]

3 BrF → BrF3 + Br2

Structure

Like ClF3 and IF3, the BrF3 molecule is T-shaped and planar. In the VSEPR formalism, the bromine center is assigned two electron pairs. The distance from the bromine each axial fluorine is 1.81 Å and to the equatorial fluorine is 1.72 Å. The angle between an axial fluorine and the equatorial fluorine is slightly smaller than 90° — the 86.2° angle observed is due to the repulsion generated by the electron pairs being greater than that of the Br-F bonds. [8] [9]

Chemical properties

In a highly exothermic reaction, BrF3 reacts with water to form hydrobromic acid and hydrofluoric acid:

BrF3 + 2 H2O → 3 HF + HBr + O2

BrF3 is a fluorinating agent, but less reactive than ClF3. [10] Already at -196 °C, it reacts with acetonitrile to give 1,1,1-trifluoroethane. [11]

BrF3 + CH3CN → CH3CF3 + 12 Br2 + 12 N2

The liquid is conducting, owing to autoionisation: [6]

2 BrF3 ⇌ BrF+2 + BrF4

Fluoride salts dissolve readily in BrF3 forming tetrafluorobromate: [6]

KF + BrF3 → KBrF4

It reacts as a fluoride donor: [12]

BrF3 + SbF5[BrF+2][SbF6]

Related Research Articles

Bromine Chemical element, symbol Br and atomic number 35

Bromine is a chemical element with the symbol Br and atomic number 35. It is the third-lightest halogen and is a volatile red-brown liquid at room temperature that evaporates readily to form a similarly coloured vapour. Its properties are intermediate between those of chlorine and iodine. Isolated independently by two chemists, Carl Jacob Löwig and Antoine Jérôme Balard, its name was derived from the Ancient Greek βρῶμος, referring to its sharp and pungent smell.

In chemistry, halogenation is a chemical reaction that entails the introduction of one or more halogens into a compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. This kind of conversion is in fact so common that a comprehensive overview is challenging. This article mainly deals with halogenation using elemental halogens (F2, Cl2, Br2, I2). Halides are also commonly introduced using salts of the halides and halogen acids. Many specialized reagents exist for and introducing halogens into diverse substrates, e.g. thionyl chloride.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

Manganese(III) fluoride Chemical compound

Manganese(III) fluoride (also known as Manganese trifluoride) is the inorganic compound with the formula MnF3. This red/purplish solid is useful for converting hydrocarbons into fluorocarbons, i.e., it is a fluorination agent. It forms a hydrate and many derivatives.

Bromine pentafluoride Chemical compound

Bromine pentafluoride, BrF5, is an interhalogen compound and a fluoride of bromine. It is a strong fluorinating agent.

Cobalt(III) fluoride Chemical compound

Cobalt(III) fluoride is the inorganic compound with the formula CoF3. Hydrates are also known. The anhydrous compound is a hygroscopic brown solid. It is used to synthesize organofluorine compounds.

An inorganic nonaqueous solvent is a solvent other than water, that is not an organic compound. These solvents are used in chemical research and industry for reactions that cannot occur in aqueous solutions or require a special environment. Inorganic nonaqueous solvents can be classified into two groups, protic solvents and aprotic solvents. Early studies on inorganic nonaqueous solvents evaluated ammonia, hydrogen fluoride, sulfuric acid, as well as more specialized solvents, hydrazine, and selenium oxychloride.

Xenon difluoride Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

Sulfur tetrafluoride Chemical compound

Sulfur tetrafluoride is the chemical compound with the formula SF4. It is a colorless corrosive gas that releases dangerous HF upon exposure to water or moisture. Despite these unwelcome characteristics, this compound is a useful reagent for the preparation of organofluorine compounds, some of which are important in the pharmaceutical and specialty chemical industries.

Selenium tetrafluoride Chemical compound

Selenium tetrafluoride (SeF4) is an inorganic compound. It is a colourless liquid that reacts readily with water. It can be used as a fluorinating reagent in organic syntheses (fluorination of alcohols, carboxylic acids or carbonyl compounds) and has advantages over sulfur tetrafluoride in that milder conditions can be employed and it is a liquid rather than a gas.

Antimony trifluoride is the inorganic compound with the formula SbF3. Sometimes called Swarts' reagent, is one of two principal fluorides of antimony, the other being SbF5. It appears as a white solid. As well as some industrial applications, it is used as a reagent in inorganic and organofluorine chemistry.

Tetrafluoroammonium

The tetrafluoroammonium cation is a positively charged polyatomic ion with chemical formula NF+
4
. It is equivalent to the ammonium ion where the hydrogen atoms surrounding the central nitrogen atom have been replaced by fluorine. Tetrafluoroammonium ion is isoelectronic with tetrafluoromethane CF
4
, trifluoramine oxide ONF
3
and the tetrafluoroborate BF
4
anion.

Thionyl tetrafluoride Chemical compound

Thionyl tetrafluoride is an inorganic compound gas with the formula SOF4. It is also known as sulfur tetrafluoride oxide. The shape of the molecule is a distorted trigonal bipyramid, with the oxygen found on the equator. The atoms on the equator have shorter bond lengths than the fluorine atoms on the axis. The sulfur oxygen bond is 1.409Å. A S−F bond on the axis has length 1.596Å and the S−F bond on the equator has length 1.539Å. The angle between the equatorial fluorine atoms is 112.8°. The angle between axial fluorine and oxygen is 97.7°. The angle between oxygen and equatorial fluorine is 123.6° and between axial and equatorial fluorine is 85.7°. The fluorine atoms only produce one NMR line, probably because they exchange positions.

Vanadium pentafluoride Chemical compound

Vanadium(V) fluoride is the inorganic compound with the chemical formula VF5. It is a colorless volatile liquid. It is a highly reactive compound, as indicated by its ability to fluorinate organic substances.

Bromine monofluoride Chemical compound

Bromine monofluoride is a quite unstable interhalogen compound with the chemical formula BrF. It can be produced through the reaction of bromine trifluoride (or bromine pentafluoride) and bromine. Due to its lability, the compound can be detected but not isolated:

Chromium pentafluoride is the inorganic compound with the chemical formula CrF5. It is a red volatile solid that melts at 34 °C. It is the highest known chromium fluoride, since the hypothetical chromium hexafluoride has not yet been synthesized.

Neptunium(VI) fluoride Chemical compound

Neptunium(VI) fluoride (NpF6) is the highest fluoride of neptunium, it is also one of seventeen known binary hexafluorides. It is an orange volatile crystalline solid. It is relatively hard to handle, being very corrosive, volatile and radioactive. Neptunium hexafluoride is stable in dry air but reacts vigorously with water.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.

Chlorine trifluoride oxide Chemical compound

Chlorine oxide trifluoride or chlorine trifluoride oxide is a corrosive liquid molecular compound with formula ClOF3. It was developed secretly as a rocket fuel oxidiser.

References

  1. "Safety Data Sheet : Bromine Trifluoride" (PDF). Chammascutters.com. Retrieved 2022-03-17.
  2. Lide, David R., ed. (2006). CRC Handbook of Chemistry and Physics (87th ed.). Boca Raton, FL: CRC Press. ISBN   0-8493-0487-3.
  3. "Archived copy" (PDF). Archived from the original (PDF) on 2012-05-13. Retrieved 2012-11-25.{{cite web}}: CS1 maint: archived copy as title (link)
  4. "Safety Data Sheet Bromine Trifluoride" (PDF). Airgas. Retrieved 16 January 2020.
  5. 1 2 Simons JH (1950). "Bromine(III) Fluoride (Bromine Trifluoride)". Bromine (III) Fluoride - Bromine Trifluoride. Inorganic Syntheses. Vol. 3. pp. 184–186. doi:10.1002/9780470132340.ch48. ISBN   978-0-470-13234-0.
  6. 1 2 3 Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  7. Lebeau P. (1906). "The effect of fluorine on chloride and on bromine". Annales de Chimie et de Physique . 9: 241–263.
  8. Gutmann V (1950). "Die Chemie in Bromitrifluorid". Angewandte Chemie. 62 (13–14): 312–315. Bibcode:1950AngCh..62..312G. doi:10.1002/ange.19500621305.
  9. Meinert H (1967). "Interhalogenverbindungen". Zeitschrift für Chemie. 7 (2): 41–57. doi:10.1002/zfch.19670070202.
  10. Rozen, Shlomo; Sasson, Revital (2007). "Bromine Trifluoride". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/9780470842898.rb266.pub2. ISBN   978-0471936237.
  11. Rozen, Shlomo (2010). "Selective Reactions of Bromine Trifluoride in Organic Chemistry". Advanced Synthesis & Catalysis. 352 (16): 2691–2707. doi:10.1002/adsc.201000482.
  12. A. J. Edwards and G. R. Jones. J. Chem. Soc. A, 1467 (1969)