![]() | |
![]() | |
Names | |
---|---|
IUPAC name Plutonium(IV) fluoride | |
Other names Plutonium tetrafluoride | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
PuF4 | |
Molar mass | 320 g/mol |
Appearance | reddish-brown monoclinic crystals |
Density | 7.1 g/cm3 |
Melting point | 1,027 °C (1,881 °F; 1,300 K) |
Structure | |
Monoclinic, mS60 | |
C12/c1, No. 15 | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Plutonium(IV) fluoride is a chemical compound with the formula PuF4. This salt is generally a brown solid but can appear a variety of colors depending on the grain size, purity, moisture content, lighting, and presence of contaminants. [4] [5] Its primary use in the United States has been as an intermediary product in the production of plutonium metal for nuclear weapons usage. [3]
Plutonium(IV) fluoride is produced in the reaction between plutonium dioxide (PuO2) or plutonium(III) fluoride (PuF3) with hydrofluoric acid (HF) in a stream of oxygen (O2) at 450 to 600 °C. The main purpose of the oxygen stream is to avoid reduction of the product by hydrogen gas, small amounts of which are often found in HF. [6]
Laser irradiation of plutonium hexafluoride (PuF6) at wavelengths under 520 nm causes it to decompose into plutonium pentafluoride (PuF5) and fluorine; if this is continued, plutonium(IV) fluoride is obtained. [7]
In terms of its structure, solid plutonium(IV) fluoride features 8-coordinate Pu centers interconnected by doubly bridging fluoride ligands. [8]
Reaction of plutonium tetrafluoride with barium, calcium, or lithium at 1200 °C gives Pu metal: [4] [5] [3]