Fluoride phosphate

Last updated

The fluoride phosphates or phosphate fluorides are inorganic double salts that contain both fluoride and phosphate anions. In mineralogy, Hey's Chemical Index of Minerals groups these as 22.1. The Nickel-Strunz grouping is 8.BN.

Contents

Related mixed anion compounds are the chloride phosphates, the fluoride arsenates and fluoride vanadates.

They are distinct from the fluorophosphates: monofluorophosphate, difluorophosphate and hexafluorophosphate which have fluorine bonds to the phosphorus.

Minerals

nameformularatio

PO4:F

formula weightcrystal systemspace groupunit cellvolumedensityrefractive indexcommentreference
Althausite Mg4(PO4)2(OH,O)(F,☐)2:~1OrthorhombicPnmaa = 8.258 b = 6.054, c = 14.383719.062.97Biaxial (+) nα = 1.588 nβ = 1.592 nγ = 1.598

2V: measured: 70° , calculated: 80°

Max birefringence: δ = 0.010

[1]
Amblygonite LiAl(PO4)F1:1TriclinicP1a = 6.644 b = 7.744 c = 6.91

α = 90.35°, β = 117.33°, γ = 91.01° Z=4

315.753.04-3.11Biaxial (-) nα = 1.577 - 1.591 nβ = 1.592 - 1.605 nγ = 1.596 - 1.613

2V: Measured: 107° to 129.5°

Birefringence: 0.020

[2]
aravaite Ba2Ca18(SiO4)6(PO4)3(CO3)F3O3:3trigonalR3ma = 7.1255, c = 66.290 Z=32914.8 [3]
Arctite Na2Ca4(PO4)3F3:1TrigonalR3ma = 7.078 c = 41.203 Z=61,787.643.13Uniaxial (-) nω = 1.578 nε = 1.577 Birefringence: 0.001 [4]
Ariegilatite BaCa12(SiO4)4(PO4)2F2OTrigonalR3ma = 7.1551 c = 41.3031381.2Uniaxial (-) nω = 1.650 nε = 1.647

Max Birefringence: δ = 0.003

[5]
Babefphite BaBePO4(F,OH)1:~1TetragonalUniaxial (+) nω = 1.629 nε = 1.632

Max birefringence: δ = 0.003

[6]
Belovite-(Ce) NaCeSr3(PO4)3F3:1TrigonalP3a = 9.692 c = 7.201585.804.19Uniaxial (-) nω = 1.653 - 1.660 nε = 1.634 - 1.640

Birefringence: 0.015

[7]
Belovite-(La) NaLaSr3(PO4)3F3:1TrigonalP3a = 9.647 c = 7.17577.884.19Uniaxial (-) nω = 1.653 nε = 1.635 - 1.636

Max birefringence: δ = 0.018

[8]
Bøggildite Na2Sr2Al2PO4F91:9MonoclinicBiaxial (+) nα = 1.462 nβ = 1.466 nγ = 1.469

2V: 80° Max birefringence:δ = 0.007

[9]
Carlgieseckeite-(Nd) NaNdCa3(PO4)3FTrigonalP3a = 9.4553 c = 6.9825540.623.91 [10]
Cloncurryite Cu0.5(VO)0.5Al2(PO4)2F2 · 5H2O2:2MonoclinicP21/ba = 4.9573 b = 12.1824 c = 18.9749 β = 90.933° Z=41145.782.525Biaxial (-) nα = 1.548(2) nγ = 1.550(2)

2V: calculated: 56°

Max brefringence: δ = 0.002

[11]
Deloneite (Na0.5REE0.25Ca0.25)(Ca0.75REE0.25)Sr1.5(CaNa0.25REE0.25)(PO4)3F0.5(OH)0.5TrigonalP3a = 9.51 c = 7.01 Z=2549.053.92Uniaxial (-) nω = 1.682 nε = 1.660

Max birefringence: δ = 0.022

[12]
Fluellite Al2(PO4)F2(OH) · 7H2OOrthorhombicFddda = 11.22 b = 21.15 c = 8.542,0272.139 - 2.17Biaxial (+) nα = 1.473 - 1.490 nβ = 1.490 - 1.496 nγ = 1.506 - 1.511

Max birefringence: δ = 0.033

[13]
Fluorapatite Ca5(PO4)3F3:1HexagonalP63/ma = 9.3973 c = 6.8782526.033.1-3.25Uniaxial (-) nω = 1.631 - 1.650 nε = 1.627 - 1.646

Birefringence: 0.004

[14]
Fluorcaphite SrCaCa3(PO4)3F3:1HexagonalP63/ma = 9.485 c = 7.000 Z=2545.39Uniaxial (-) nω = 1.649 nε = 1.637

Max birefringence: δ = 0.012

[15]
Fluorphosphohedyphane Ca2Pb3(PO4)3F3:1HexagonalP63/ma = 9.640, c = 7.012 Z=2564.45.445Uniaxial (-) nω = 1.836 nε = 1.824

Max birefringence: δ = 0.012

[16]
Fluorstrophite SrCaSr3(PO4)3F3:1HexagonalP63/ma = 9.565 c = 7.115 Z=2563.74Uniaxial (-) nω = 1.651 nε = 1.637

Max birefringence: δ = 0.014

[17]
Francolite
Herderite CaBe(PO4)FMonoclinica = 4.81, b = 7.7 c = 9.82 β = 90.1°363.73.02Biaxial (-) nα = 1.556 - 1.592 nβ = 1.578 - 1.610 nγ = 1.589 - 1.620

2V: calculated: 70°

Max birefringence: δ = 0.033

[18]
Iangreyite Ca2Al7(PO4)2(PO3OH)2(OH,F)15 · 8H2O4:~15TrigonalP3 2 1a = 6.988 c = 16.707706.5 [19]
Isokite CaMg(PO4)FMonoclinicB2/ba = 6.52 b = 8.75 c = 7.51 β = 121.47°365.43.15-3.27Biaxial (+) nα = 1.590 nβ = 1.595 nγ = 1.615

2V: ,easured: 51°

Max birefringence: δ = 0.025

[20]
KingiteAl3(PO4)2F2(OH) · 7H2O2:2Triclinica = 9.15 b = 10 c = 7.24

α = 98.6°, β = 93.6°, γ = 93.2°

Biaxial [21]
Kuannersuite-(Ce) NaCeBa3(PO4)3F0.5Cl0.56:1TrigonalP3a = 9.909 c = 7.402629.424.51 [22]
Lacroixite NaAl(PO4)F1:1MonoclinicB2/ba = 6.414 b = 8.207 c = 6.885 β = 115.47°327.203.126 - 3.29Biaxial (-) nα = 1.546 nβ = 1.563 nγ = 1.580

2V: measured: 89°

Birefringence: 0.034

[23]
Mcauslanite Fe3Al2(PO4)3(PO3OH)F · 18H2O4:1Triclinica = 10.05 b = 11.56 c = 6.88

α = 105.84°, β = 93.66°, γ = 106.47°

728.7Biaxial (-) nα = 1.522 nβ = 1.531 nγ = 1.534

2V: measured: 55° to 59.7°, calculated: 58°

Max birefringence:δ = 0.012

[24]
Minyulite KAl2(PO4)2(OH,F) · 4H2O2:~1OrthorhombicPba2a = 9.34 b = 9.74 c = 5.525022.47Biaxial (+) nα = 1.531 nβ = 1.534 nγ = 1.538

2V: measured: 70° , calculated: 82°

Max birefringence: δ = 0.007

[25]
Miyahisaite (Sr,Ca)2Ba3(PO4)3F3:1HexagonalP63/ma = 9.921, c = 7.469 Z=2636.74.511 [26]
Morinite NaCa2Al2(PO4)2(OH)F4 · 2H2O2:4Monoclinic2.94Biaxial (-) nα = 1.551 nβ = 1.563 nγ = 1.565

2V: measured: 43° , calculated: 44°

Max birefringence: δ = 0.014

[27]
Nacaphite Na2Ca(PO4)FMonoclinicP21/ba = 13.318 b = 7.0964 c = 10.6490 β = 113.526° Z=8922.81Biaxial (-) nα = 1.508 nβ = 1.515 nγ = 1.520

2V: 80° Max birefringence: δ = 0.012

[28]
natrophosphate Na7(PO4)2F.19H2O2:1IsometricFd3ca = 27.79 Z=5621,461.781,71-1.72Isotropic [29] [30]
Nefedovite Na5Ca4(PO4)4F4:1Triclinica = 5.4 Å, b = 11.64 Å, c = 16.48 Å

α = 134.99°, β = 90.04°, γ = 89.96°

732.60Biaxial (+) nα = 1.571 nγ = 1.590

Max birefringence: δ = 0.019

[31]
Nevadaite (Cu2+,Al,V3+)6Al8(PO4)8F8(OH)2 · 22H2O8:8OrthorhombicP21mna = 12.123 b = 18.999 c = 4.9612.54Biaxial (-) nα = 1.540 nβ = 1.548 nγ = 1.553

2V: measured: 76°, calculated: 76°

Max birefringence: δ = 0.013

[32]
Panasqueiraite CaMg(PO4)(OH,F)1:~1monoclinica = 6.53 b = 8.75 c = 6.91 β = 112.33°365.23.27Biaxial (+) nα = 1.590 nβ = 1.596 nγ = 1.616

2V: measured: 51° , calculated: 58°

Max birefringence: δ = 0.026

[33]
Richellite CaFe3+2(PO4)2(OH,F)22:~2a = 5.18 c = 12.61 [34]
Stronadelphite Sr5(PO4)3F3:1HexagonalP63/ma = 9.845 c = 7.383619.72Uniaxial (-) nω = 1.630(1) nε = 1.623(1)

Max birefringence: δ = 0.007

[35]
Triplite Mn2+2(PO4)F1:1MonoclinicP21/ba = 11.9 b = 6.52 c = 10.09 β = 105.62°758.43.9Biaxial (+) nα = 1.650 nβ = 1.660 nγ = 1.680

2V: measured: 70° to 90°, calculated: 72°

Max birefringence: δ = 0.030

[36]
Väyrynenite Mn2+Be(PO4)(OH,F)1:~1MonoclinicP21/ba = 5.411 b = 14.49 c = 4.73 β = 102.75°361.713.22Biaxial (-) nα = 1.638 - 1.640 nβ = 1.658 - 1.662 nγ = 1.664 - 1.667

2V: measured: 46° to 55°, Calculated: 51° to 57°

Max birefringence: δ = 0.026 - 0.027

[37]
Viitaniemiite Na(Ca,Mn2+)Al(PO4)(F,OH)31:~3Monoclinica = 6.83 b = 7.14 c = 5.44 β = 109.37°250.27Biaxial (-) nα = 1.557 nβ = 1.565 nγ = 1.571

2V: measured: 81° , calculated: 80°

Max birefringence: δ = 0.014

[38]
Wagnerite (Mg,Fe2+)2(PO4)F1:1MonoclinicP21/ba = 9.645 b = 31.659 c = 11.914 β = 108.26(3)°3454.83.15Biaxial (+) nα = 1.568 nβ = 1.572 nγ = 1.582

2V: Measured: 25° to 35°

? Birefringence:0.046

Max birefringence: δ = 0.015

[39]
Wavellite Al3(PO4)2(OH,F)3 · 5H2O2:~3Orthorhombica = 9.621 b = 17.363 c = 6.9941168.32.36Biaxial (+) nα = 1.518 - 1.535 nβ = 1.524 - 1.543 nγ = 1.544 - 1.561

2V: measured: 60° to 72°, calculated: 60° to 70°

Max birefringence: δ = 0.026

[40]
Zwieselite Fe2+2(PO4)F1:1MonoclinicP21/b753.82Biaxial (+) nα = 1.686 - 1.696 nβ = 1.690 - 1.704 nγ = 1.703 - 1.713

2V: measured: 58° , calculated: 60°

Max birefringence: δ = 0.017

[41]
Na5-4.5PO4(CO3,F,Cl)1:~1 [29]

Artificial

nameformulaformula weightcrystal systemspace groupunit cell Åvolumedensityrefractive indexcommentreference
EMM-9; 4-(dimethylamino)pyridine fluoroaluminophosphate(DMAP)2Al4P4O17F2•H2OmonoclinicP21/aa=14.335 b=13.561 c=14.497 β =101.094°layered [42]
KBPO4FmonoclinicCc [43]
Iron-Doped Sodium–Vanadium FluorophosphateNa3V2–yO2–yFey(PO4)2F1+y (y < 0.3)tetrahedralP42/mnma=9.0277 c=10.6259866.0 [44]
Na3V2O1.6(PO4)2F1.4 [44]
Na3V2(PO4)2F3 [45]
Na2MnPO4F [46]
αNa2FePO4FmonoclinicP21/ca = 13.675, b = 5.2503, c = 13.7202, β = 120.230° [46]
βNa2FePO4Forthorhombic [46]
RbBPO4F210.25cubicP213a=7.5901 Z=4437.263.194colourless [43]
MIL-145RbGa3(PO4)2(HPO4)F4·C5N2H16·2H2O3187.11monoclinicP2a=14.4314 b=9.1152 c=16.7889 β = 112.708 Z=12037.302.598colourless [47]
K2SnPO4F3348.86monoclinicP21/ca=10.039 b=9.415 c=21.602 beta=95.464 Z=122032.63.420colourless [48]
K6Sn(P2O7)2F2739.17monoclinicP21/ca=8.515 b=12.400 c=8.403 beta=99.58 Z=29874.82.806colourless [48]
K2Sb(P2O7)FtetragonalP4bma=8.5239 c=5.572 Z=2404.83.223colourless SHG 4.0×KDP [49]
CsBPO4FcubicP213a=7.7090 Z=4458.143.736colourless [43]
Na2PrF2(PO4)cubic [50]
Na2NdF2(PO4)cubic [50]
Na2SmF2(PO4)cubic [50]
Na2EuF2(PO4)cubic [50]
Na2TbF2(PO4)cubic [50]
Na2PrF2(PO4)cubic [50]
PbZn(PO4)F386.53orthorhombicPna21a=8.985 b=9.381 c=4.8212 Z=4406.46.318colourless [51]

Related Research Articles

Aluminium carbonate (Al2(CO3)3), is a carbonate of aluminium. It is not well characterized; one authority says that simple carbonates of aluminium are not known. However related compounds are known, such as the basic sodium aluminium carbonate mineral dawsonite (NaAlCO3(OH)2) and hydrated basic aluminium carbonate minerals scarbroite (Al5(CO3)(OH)13•5(H2O)) and hydroscarbroite (Al14(CO3)3(OH)36•nH2O).

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as carbonatoborates or borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

The oxynitrides are a group of inorganic compounds containing oxygen and nitrogen not bound to each other, instead combined with other non-metallic or metallic elements. Some of these are oxosalts with oxygen replaced by nitrogen. Some of these compounds do not have a fixed oxygen to nitrogen ratio, but instead form ceramics with a range of compositions. They are in the class of mixed anion compounds.

The sulfate chlorides are double salts containing both sulfate (SO42–) and chloride (Cl) anions. They are distinct from the chlorosulfates, which have a chlorine atom attached to the sulfur as the ClSO3 anion.

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.

<span class="mw-page-title-main">Sulfate carbonate</span> Class of chemical compounds

The sulfate carbonates are a compound carbonates, or mixed anion compounds that contain sulfate and carbonate ions. Sulfate carbonate minerals are in the 7.DG and 5.BF Nickel-Strunz groupings.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

Borate sulfates are mixed anion compounds containing separate borate and sulfate anions. They are distinct from the borosulfates where the borate is linked to a sulfate via a common oxygen atom.

Borate sulfides are chemical mixed anion compounds that contain any kind of borate and sulfide ions. They are distinct from thioborates in which sulfur atoms replace oxygen in borates. There are also analogous borate selenides, with selenium ions instead of sulfur.

The borate chlorides are chemical compounds that contain both borate ions and chloride ions. They are mixed anion compounds. Many of them are minerals. Those minerals that crystallise with water (hydrates) may be found in evaporite deposits formed when mineral water has dried out.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

The borate iodides are mixed anion compounds that contain both borate and iodide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate bromides.

Fluoride nitrates are mixed anion compounds that contain both fluoride ions and nitrate ions. Compounds are known for some amino acids and for some heavy elements. Some transition metal fluorido complexes that are nitrates are also known. There are also fluorido nitrato complex ions known in solution.

Selenide borates, officially known as borate selenides, are chemical mixed anion compounds that contain any kind of borate and selenide ions. They are distinct from selenoborates in which selenium atoms replace oxygen in borates. There are also analogous borate sulfides, with sulfur ions instead of selenium.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Iodate nitrates are mixed anion compounds that contain both iodate and nitrate anions.

References

  1. "Althausite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  2. "Amblygonite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  3. Krüger, Biljana; Krüger, Hannes; Galuskin, Evgeny V.; Galuskina, Irina O.; Vapnik, Yevgeny; Olieric, Vincent; Pauluhn, Anuschka (2018-12-01). "Aravaite, Ba 2 Ca 18 (SiO 4 ) 6 (PO 4 ) 3 (CO 3 )F 3 O: modular structure and disorder of a new mineral with single and triple antiperovskite layers". Acta Crystallographica Section B. 74 (6): 492–501. Bibcode:2018AcCrB..74..492K. doi:10.1107/S2052520618012271. ISSN   2052-5206. S2CID   104301273.
  4. "Arctite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  5. "Ariegilatite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  6. "Babefphite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  7. "Belovite-(Ce): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  8. "Belovite-(La): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  9. "Bøggildite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  10. "Carlgieseckeite-(Nd): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  11. "Cloncurryite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-04.
  12. "Deloneite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  13. "Fluellite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  14. "Fluorapatite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  15. "Fluorcaphite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  16. "Fluorphosphohedyphane: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  17. "Fluorstrophite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  18. "Herderite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  19. "Iangreyite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  20. "Isokite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  21. "Kingite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-04.
  22. "Kuannersuite-(Ce): Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  23. "Lacroixite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  24. "Mcauslanite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  25. "Minyulite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  26. "Miyahisaite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  27. "Morinite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  28. "Nacaphite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  29. 1 2 Mitchell, R. H. (5 July 2018). "An ephemeral pentasodium phosphate carbonate from natrocarbonatite lapilli, Oldoinyo Lengai, Tanzania". Mineralogical Magazine. 70 (2): 211–218. doi:10.1180/0026461067020326. S2CID   140140550.
  30. "Natrophosphate: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  31. "Nefedovite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  32. "Nevadaite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-04.
  33. "Panasqueiraite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  34. "Richellite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  35. "Stronadelphite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  36. "Triplite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  37. "Väyrynenite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  38. "Viitaniemiite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  39. "Wagnerite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  40. "Wavellite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-04.
  41. "Zwieselite: Mineral information, data and localities". www.mindat.org. Retrieved 2020-06-03.
  42. Guo, Peng; Afeworki, Mobae; Cao, Guang; Yun, Yifeng; Sun, Junliang; Su, Jie; Wan, Wei; Zou, Xiaodong (2018-09-17). "Synthesis and Structure of a Layered Fluoroaluminophosphate and Its Transformation to a Three-Dimensional Zeotype Framework". Inorganic Chemistry. 57 (18): 11753–11760. doi:10.1021/acs.inorgchem.8b01890. ISSN   0020-1669.
  43. 1 2 3 Ding, Qingran; Zhao, Sangen; Li, Lina; Shen, Yaoguo; Shan, Pai; Wu, Zhenyue; Li, Xianfeng; Li, Yanqiang; Liu, Shuai; Luo, Junhua (2019-02-04). "Abrupt Structural Transformation in Asymmetric ABPO 4 F (A = K, Rb, Cs)". Inorganic Chemistry. 58 (3): 1733–1737. doi:10.1021/acs.inorgchem.8b02754. ISSN   0020-1669.
  44. 1 2 Palomares, Verónica; Iturrondobeitia, Amaia; Sanchez-Fontecoba, Paula; Goonetilleke, Damian; Sharma, Neeraj; Lezama, Luis; Rojo, Teófilo (16 December 2019). "Iron-Doped Sodium–Vanadium Fluorophosphates: Na3V2–yO2–yFey(PO4)2F1+y (y < 0.3)". Inorganic Chemistry. 59 (1): 854–862. doi:10.1021/acs.inorgchem.9b03111. PMID   31840984. S2CID   209384135.
  45. Semykina, Daria O.; Sharafutdinov, Marat R.; Kosova, Nina V. (2022-06-24). "Understanding of the Mechanism and Kinetics of the Fast Solid-State Reaction between NaF and VPO 4 to Form Na 3 V 2 (PO 4 ) 2 F 3". Inorganic Chemistry. 61 (26): 10023–10035. doi:10.1021/acs.inorgchem.2c00951. ISSN   0020-1669. PMID   35748412. S2CID   249989441.
  46. 1 2 3 Kirsanova, Maria A.; Akmaev, Alexey S.; Aksyonov, Dmitry A.; Ryazantsev, Sergey V.; Nikitina, Victoria A.; Filimonov, Dmitry S.; Avdeev, Maxim; Abakumov, Artem M. (2020-11-16). "Monoclinic α-Na 2 FePO 4 F with Strong Antisite Disorder and Enhanced Na + Diffusion". Inorganic Chemistry. 59 (22): 16225–16237. doi:10.1021/acs.inorgchem.0c01961. ISSN   0020-1669. PMID   33137251. S2CID   226241204.
  47. Martineau, Charlotte; Loiseau, Thierry; Beitone, Lionel; Férey, Gérard; Bouchevreau, Boris; Taulelle, Francis (2013). "Single-crystal XRD and solid-state NMR structural resolution of a layered fluorinated gallium phosphate: RbGa 3 (PO 4 ) 2 (HPO 4 )F 4 ·C 5 N 2 H 16 ·2H 2 O (MIL-145)". Dalton Trans. 42 (2): 422–431. doi:10.1039/C2DT31464A. ISSN   1477-9226. PMID   23069866.
  48. 1 2 Hu, Shuaishuai; Su, Zhi (2019). "Two new tin( iv )-containing phosphate fluorides with two types of Sn( iv )–P–O–F frameworks and short cutoff edges". New Journal of Chemistry. 43 (41): 16127–16130. doi:10.1039/C9NJ04424H. ISSN   1144-0546. S2CID   203137437.
  49. Deng, Yalan; Huang, Ling; Dong, Xuehua; Wang, Lei; Ok, Kang Min; Zeng, Hongmei; Lin, Zhien; Zou, Guohong (2020-11-16). "K 2 Sb(P 2 O 7 )F: Cairo Pentagonal Layer with Bifunctional Genes Reveal Optical Performance". Angewandte Chemie International Edition. 59 (47): 21151–21156. doi:10.1002/anie.202009441. ISSN   1433-7851. PMID   32745331. S2CID   250308476.
  50. 1 2 3 4 5 6 Zimina, G. V.; Smirnova, I. N.; Gorkovenko, M. Yu.; Spiridonov, F. M.; Komissarova, L. N.; Kaloev, N. I. (1995-02-21). "ChemInform Abstract: Synthesis and Studies of Fluorophosphates of Rare Earth Elements Na2LnF2PO4". ChemInform. 26 (8). doi:10.1002/chin.199508015. ISSN   0931-7597.
  51. li, xiaobao; Hu, Chun-Li; Kong, Fang; Mao, Jiang-Gao (2023). "Structure and Optical Property Evolutions in PbM(PO4)X (M = Zn, Sn; X = halogen): SHG Effect and Birefringence". Inorganic Chemistry Frontiers. 10 (8): 2268–2275. doi: 10.1039/D3QI00230F . ISSN   2052-1553. S2CID   257419074.