Einsteinium trifluoride

Last updated
Einsteinium fluoride
Names
Other names
Einsteinium(III) fluoride, einsteinium trifluoride
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Es.3FH/h;3*1H/q+3;;;/p-3
    Key: NYNVZWGCTJTDET-UHFFFAOYSA-K
  • [Es+3].[F-].[F-].[F-]
Properties
EsF3
Molar mass 309 g·mol−1
Appearancecrystals
insoluble
Related compounds
Related compounds
Californium(III) fluoride
Berkelium(III) fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Einsteinium fluoride is a binary inorganic chemical compound of einsteinium and fluorine with the chemical formula EsF3. [1]

Contents

Synthesis

Einsteinium fluoride can be precipitated from einsteinium(III) chloride solutions upon reaction with fluoride ions. An alternative preparation procedure is to expose einsteinium(III) oxide to chlorine trifluoride (ClF3) or F2 gas at a pressure of 1–2 atmospheres and a temperature between 300 and 400 °C. The EsF3 crystal structure is hexagonal, as in californium(III) fluoride (CfF3) where the Es3+ ions are 8-fold coordinated by fluorine ions in a bicapped trigonal prism arrangement. [2] [3] [4]

Physical properties

The compound forms crystals and is insoluble in water. [5]

Chemical properties

The compound is reduced by metallic lithium: [6] [7]

EsF3 + 3Li → Es + 3 LiF

Related Research Articles

<span class="mw-page-title-main">Berkelium</span> Chemical element, symbol Bk and atomic number 97

Berkelium is a synthetic chemical element; it has symbol Bk and atomic number 97. It is a member of the actinide and transuranium element series. It is named after the city of Berkeley, California, the location of the Lawrence Berkeley National Laboratory where it was discovered in December 1949. Berkelium was the fifth transuranium element discovered after neptunium, plutonium, curium and americium.

<span class="mw-page-title-main">Curium</span> Chemical element, symbol Cm and atomic number 96

Curium is a synthetic chemical element; it has symbol Cm and atomic number 96. This transuranic actinide element was named after eminent scientists Marie and Pierre Curie, both known for their research on radioactivity. Curium was first intentionally made by the team of Glenn T. Seaborg, Ralph A. James, and Albert Ghiorso in 1944, using the cyclotron at Berkeley. They bombarded the newly discovered element plutonium with alpha particles. This was then sent to the Metallurgical Laboratory at University of Chicago where a tiny sample of curium was eventually separated and identified. The discovery was kept secret until after the end of World War II. The news was released to the public in November 1947. Most curium is produced by bombarding uranium or plutonium with neutrons in nuclear reactors – one tonne of spent nuclear fuel contains ~20 grams of curium.

<span class="mw-page-title-main">Einsteinium</span> Chemical element, symbol Es and atomic number 99

Einsteinium is a synthetic chemical element; it has symbol Es and atomic number 99. Einsteinium is a member of the actinide series and it is the seventh transuranium element. It was named in honor of Albert Einstein.

<span class="mw-page-title-main">Mendelevium</span> Chemical element, symbol Md and atomic number 101

Mendelevium is a synthetic chemical element; it has symbol Md and atomic number 101. A metallic radioactive transuranium element in the actinide series, it is the first element by atomic number that currently cannot be produced in macroscopic quantities by neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. Seventeen isotopes are known; the most stable is 258Md with half-life 51 days; however, the shorter-lived 256Md is most commonly used in chemistry because it can be produced on a larger scale.

<span class="mw-page-title-main">Berkelium compounds</span> Any chemical compound having at least one berkelium atom

Berkelium forms a number of chemical compounds, where it normally exists in an oxidation state of +3 or +4, and behaves similarly to its lanthanide analogue, terbium. Like all actinides, berkelium easily dissolves in various aqueous inorganic acids, liberating gaseous hydrogen and converting into the trivalent oxidation state. This trivalent state is the most stable, especially in aqueous solutions, but tetravalent berkelium compounds are also known. The existence of divalent berkelium salts is uncertain and has only been reported in mixed lanthanum chloride-strontium chloride melts. Aqueous solutions of Bk3+ ions are green in most acids. The color of the Bk4+ ions is yellow in hydrochloric acid and orange-yellow in sulfuric acid. Berkelium does not react rapidly with oxygen at room temperature, possibly due to the formation of a protective oxide surface layer; however, it reacts with molten metals, hydrogen, halogens, chalcogens and pnictogens to form various binary compounds. Berkelium can also form several organometallic compounds.

<span class="mw-page-title-main">Einsteinium(III) iodide</span> Chemical compound

Einsteinium triiodide is an iodide of the synthetic actinide einsteinium which has the molecular formula EsI3. This crystalline salt is an amber-coloured solid. It glows red in the dark due to einsteinium's intense radioactivity.

<span class="mw-page-title-main">Einsteinium(III) oxide</span> Chemical compound

Einsteinium(III) oxide is an oxide of the synthetic actinide einsteinium which has the molecular formula Es2O3. It is a colourless solid.

<span class="mw-page-title-main">Actinium(III) fluoride</span> Chemical compound

Actinium(III) fluoride (AcF3) is an inorganic compound, a salt of actinium and fluorine.

<span class="mw-page-title-main">Curium(III) fluoride</span> Chemical compound

Curium(III) fluoride or curium trifluoride is the chemical compound composed of curium and fluorine with the formula CmF3. It is a white, nearly insoluble salt that has the same crystal structure as LaF3. It precipitates as a hydrate when fluoride ions are added to a weakly acidic Cm(III) solution; alternatively it can be synthesized by reacting hydrofluoric acid with Cm(OH)3. The anhydrous form is then obtained by desiccation or by treatment with hydrogen fluoride gas.

Neptunium(III) fluoride or neptunium trifluoride is a salt of neptunium and fluorine with the formula NpF3.

<span class="mw-page-title-main">Neptunium(IV) fluoride</span> Chemical compound

Neptunium(IV) fluoride or neptunium tetrafluoride is a inorganic compound with the formula NpF4. It is a green salt and is isostructural with UF4.

Neptunium(V) fluoride or neptunium pentafluoride is a chemical compound of neptunium and fluorine with the formula NpF5.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

Einsteinium compounds are compounds that contain the element einsteinium (Es). These compounds largely have einsteinium in the +3 oxidation state, or in some cases in the +2 and +4 oxidation states. Although einsteinium is relatively stable, with half-lives ranging from 20 days upwards, these compounds have not been studied in great detail.

<span class="mw-page-title-main">Protactinium(V) fluoride</span> Chemical compound

Protactinium(V) fluoride is a fluoride of protactinium with the chemical formula PaF5.

<span class="mw-page-title-main">Ytterbium(II) fluoride</span> Chemical compound

Ytterbium(II) fluoride is a binary inorganic compound of ytterbium and fluorine with the chemical formula YbF2.

<span class="mw-page-title-main">Plutonium pentafluoride</span> Chemical compound

Plutonium pentafluoride is a binary inorganic compound of plutonium and fluorine with the chemical formula PuF5.

<span class="mw-page-title-main">Berkelium(III) fluoride</span> Chemical compound

Berkelium(III) fluoride is a binary inorganic compound of berkelium and fluorine with the chemical formula BkF
3
.

<span class="mw-page-title-main">Berkelium(III) bromide</span> Chemical compound

Berkelium bromide is a bromide of berkelium, with the chemical formula BkBr3.

Einsteinium oxychloride is an inorganic chemical compound of einsteinium, oxygen, and chlorine with the chemical formula EsClO.

References

  1. Yaws, Carl L. (6 January 2015). The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals: Physical Properties for More Than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics. Gulf Professional Publishing. p. 709. ISBN   978-0-12-801146-1 . Retrieved 28 June 2023.
  2. Ensor, D. D.; Peterson, J. R.; Haire, R. G.; Young, J. P. (1981). "Absorption spectrophotometric study of 253EsF3 and its decay products in the bulk-phase solid state". Journal of Inorganic and Nuclear Chemistry. 43 (10): 2425–2427. doi:10.1016/0022-1902(81)80274-6.
  3. Greenwood, p. 1270
  4. Young, J. P.; Haire, R. G.; Fellows, R. L.; Peterson, J. R. (1978). "Spectrophotometric studies of transcurium element halides and oxyhalides in the solid state". Journal of Radioanalytical Chemistry. 43 (2): 479–488. doi:10.1007/BF02519508. S2CID   95361392.
  5. Macintyre, Jane E. (23 July 1992). Dictionary of Inorganic Compounds. CRC Press. p. 3121. ISBN   978-0-412-30120-9 . Retrieved 28 June 2023.
  6. Morss, L. R.; Edelstein, Norman M.; Fuger, Jean (31 December 2007). The Chemistry of the Actinide and Transactinide Elements (3rd ed., Volumes 1-5). Springer Science & Business Media. p. 1390. ISBN   978-1-4020-3598-2 . Retrieved 28 June 2023.
  7. Haire, Richard G. (2006). "Einsteinium". In Morss, Lester R.; Edelstein, Norman M.; Fuger, Jean (eds.). The Chemistry of the Actinide and Transactinide Elements (PDF). Vol. 3 (3rd ed.). Dordrecht, the Netherlands: Springer. pp. 1577–1620. doi:10.1007/1-4020-3598-5_12. ISBN   978-1-4020-3555-5. Archived from the original (PDF) on 2010-07-17.