Borate fluoride

Last updated

The borate fluorides or fluoroborates are compounds containing borate or complex borate ions along with fluoride ions that form salts with cations such as metals. They are in the broader category of mixed anion compounds. They are not to be confused with tetrafluoroborates (BF4) or the fluorooxoborates which have fluorine bonded to boron.

Examples

formulanamemwsystemspace groupunit cell Åvolume Å3densitycommentreferences
Be2(BO3)(OH,F) · H2O Berborite trigonalP3a = 4.434, c = 5.33490.82colourless

Uniaxial (-) nω = 1.580 nε = 1.485

Max birefringence δ = 0.095

[1]

γ‐Be2BO3Fγ‐BBF95.83trigonalR32a=4.4418 c=19.909 Z=3340.171.946Uniaxial (-) SHG 2.3 × KDP
NH4Be2BO3F2ABBF132.87trigonalR32a=4.4398 c=12.4697 Z=3212.872.243Uniaxial (-) no=1.49389 ne=1.41919 at 636 nm [2]
NaBe2BO3F2 sodium beryllium borate fluoride (NBBF)C2a=12.643 b=8.729 c=7.591 β=113.6°768double layers of borate rings sandwiching barium atoms. Between pairs of double layers are sodium ions with fluoride. [3]
Mg2(BO3)(F,OH) Pertsevite-(F)orthorhombicPna21a = 20.49, b = 4.571, c = 11.89 Z=161,113.6Density 3.12

transparent

Biaxial (+) nα = 1.609 nβ = 1.620 nγ = 1.642

2V: 65°

Max birefringence: δ = 0.033

[4]
Mg3(BO3)(F,OH)3 Fluoborite hexagonala = 8.8, c = 3.1208colourless

Uniaxial (-) nω = 1.570 nε = 1.534

Max birefringence δ = 0.036

[5]
Mg3(OH)[B(OH)4]2(SO4)F sulfoborite orthorhombicPnmaa=10.132 b=12.537 c=7.775987.6Biaxial (-) nα = 1.527 nβ = 1.536 nγ = 1.551

2V 79°

Max birefringence δ = 0.024

[6]
Na6Mg3B10O18F6monoclinicP21/ca=13.420 b=6.400 c=10.701 β=90.693°band gap 5.40 eV; birefringence Δn = 0.039 at 1064 nm [7]
NaMgBe2(BO3)2FNMBBFP3c1a=4.5408 c=13.439birefringence 0.081 at 546.1 nm [8]
Al6(BO3)5F3

Jeremejevite

hexagonal

P63/m

a = 8.5591, c = 8.1814

519

density 3.28

Uniaxial (-) nω = 1.653 nε = 1.640

Max birefringence δ = 0.013

[9] [10]
Al8(BO3)4(B2O5)F8704.7tetragonalP42/mmca=9.134 c=19.112 Z=41,595density 2.935 colourless [9]
Na(Mg3)Al6(Si6O18)(BO3)3(OH)3F Fluor-dravite trigonalR3ma = 15.955, c = 7.153 Z=31,577density 3.120

dark brown

Uniaxial (-) nω = 1.645(2) nε = 1.621(2)

Max birefringence δ = 0.024

[11]
Na(Li1.5Al1.5)Al6(Si6O18)(BO3)3(OH)3F Fluor-elbaite trigonalR3ma = 15.8933, c = 7.12221,558blue green

Uniaxial (-)

[12]
K6B12O19F4744.32orthorhombicPnmaa =15.291 b =7.707 c =8.672 Z=21022.02.419 [13]
KBe2BO3F2 KBBF hexagonalR32a=4.427 c=18.744318.32.40Be2BO6F2 rings SHG 1.2 × KDP; UV cutoff 147 nm [14]
Ca5(BO3)3F [15]
Li3CaB2O5F363.04orthorhombicPnmaa=25.685 b=3.4697 c=5.4404 Z=2484.842.487colourless [16]
Li5Ca9(BO3)7F2P1
NaCaBe2B2O6F [17]
KCaBe2B2O6F467.64P3_1ca=4.705 c=14.554 Z=2279.12.783 [18]
Ca(Li2Al)Al6(Si6O18)(BO3)3(OH)3F Fluor-liddicoatite trigonalR3ma = 15.875, c = 7.126 Z=31,555density 3.02

Uniaxial (-) nω = 1.637 nε = 1.621

Max birefringence δ = 0.016

[19]
CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3F Fluor-uvite trigonalR3ma = 15.954, c = 7.214 Z=31,590black

Uniaxial nω = 1.637 - 1.668 nε = 1.619 - 1.639

Max birefringence δ = 0.018 - 0.029

[20]
KCaBe2B2O6F
Sc2F2(B2O5)229.54orthorhombicPbama=9.667 b=14.199 c=4.0395 Z=4554.42.750colourless [21]
K11Sc5(B5O10)4F6orthorhombicFdd2a 56.769 b 12.207 c 12.6088transparent to <190 nm [22]
Na(Mn2+)3Al6(Si6O18)(BO3)3(OH)3F Fluor-tsilaisite trigonalR3ma = 15.9398, c = 7.13631,570greenish yellow

Uniaxial (-)

[23]
NaFe3Al6Si6B3O30F [9]
Na(Fe2+3)Al6(Si6O18)(BO3)3(OH)3F Fluor-schorl trigonalR3ma = 16.005, c = 7.176 Z=31,591.9black

Uniaxial (-) nω = 1.660 - 1.661 nε = 1.636 - 1.637

Max birefringence δ = 0.024

[24]
Na(Fe3+3)Al6(Si6O18)(BO3)3O3F Fluor-buergerite trigonalR3ma = 15.8692, c = 7.18821,568density 3.311

brown

Uniaxial (-) nω = 1.735 nε = 1.655

Birefringence 0.080

[25]
Ca(Fe2+)3MgAl5(Si6O18)(BO3)3(OH)3F Fluor-feruvite [26]
KCaZn2(BO3)2F
Li6RbB2O6F263.73orthorhombicPnmaa=8.41 b=15.96 c=5.08 Z=26822.568 [27]
RbBe2BO3F2RBBFTrigonalR32a=4.434 c=19.758 z=3also contains BeO3F tetrahedra and BO3. It transmits radiation from 180 to 3500 nm. [28]
Rb18Mg6(B5O10)3(B7O14)2FmonoclinicC2/ca=11.06 b=19.70 c=31.01 β=90.13° [29]
RbCaBe2B2O6FTrigonalR32 [30]
KSrBe2B2O6F [17]
LiSr3Be3B3O9F4 [31]
NaSr3Be3B3O9F4 [32]
K3Sr3Li2Al4B6O20FSHG 4 × KDP; 170 nm UV cutoff [9]
Ca(Y,REE,Ca,Na,Mn)15Fe2+(P,Si)Si6B3O34F14 Proshchenkoite-(Y) trigonalR3ma = 10.7527, c = 27.40022,743.6brownish [33]
(Y,REE,Ca,Na)15(Al,Fe3+)(CaxAs3+1−x)(Si,As5+)Si6B3(O,F)48 Hundholmenite-(Y) trigonalR3ma = 10.675, c = 27.02 Z=32,667density 5.206

brownish

Uniaxial (-)

[34]
(Na,Ca)3(Y,Ce)12Si6B2O27F14 Okanoganite-(Y) trigonalR3ma = 10.7108, c = 27.0404.35Tan coloured

Uniaxial (-) nω = 1.753 nε = 1.740

Max birefringence δ = 0.013

[35]
? Y5(SiO4,BO4)3(O,OH,F) Tritomite-(Y) ?hexagonala = 9.32, c = 6.843.05-3.4isotropic

n = 1.627 - 1.685

Cd8B5O15F1212.25cubicFd3ma = 13.972 Z = 82,7275.904colourless [36]
CdZn2KB2O6F
Li3Cs6Al2B14O28F1490.58orthorhombicPnmaa=21.8412 b=19.8875 c=7.1577 Z=43109.13.184 [37]
CsBe2BO3F2247.74trigonalR32a=4.4575 c=21.310 Z=3366.73.366colourless [38]
Cs18Mg6(B5O10)3(B7O14)2FmonoclinicC2/ca=11.234 b=20.11 c=32.12 β=90.225° [29]
CsCaBe2B2O6FtrigonalR32 [39]
BaBOF3221.15monoclinicP21/ca = 4.620 b = 15.186 c = 4.426 β = 92.045° Z=4310.3contains chains of -OB(F2)- and a double chain of BaF [40]
Ba5(BO3)3F [41]
Li2BaSc(BO3)2F332.80hexagonalP63/ma=4.895 c=14.346297.73.713 [42]
LiBa12(BO3)7F4I4/mcm
BaBe2BO3F3271.16hexagonalP63a=7.628 c=13.990 Z=6704.93.832UV cutoff <185 nm; birefringence 0,081 at 200 nm [43]
NaBa12(BO3)7F4I4/mcm
BaMgBe2(BO3)2F2BMBBF335.283trigonalP3c1a=4.5898 c=15.348280.013.976colourless [Be2B3O6F2] [44]
Ba3.75MgB7O14F2.5886.50monoclinicC2/ca 16.611 b 13.677 c 15.141 β 121.239° Z=82941.04.004transparent > 203 nm; birefringence 0.081@546 nm [45]
BaAl(BO3)F2hexagonalP6a=4.8879 c=9.403 Z=2194.5UV cutoff 165 nm [46]
K3Ba3Li2Al4B6O20F [9]
K5Ba10(BO3)8FtrigonalR3ca = 15.293, c = 22.699 Z = 6 [47]
KBa7Mg2B14O28F5monoclinicC2/ca = 16.638 b = 13.609 c = 15.214 β = 121.309° Z=42943.33.934colourless [48]
BaCaBe2(BO3)2F2BCBBFtrigonalP3c1a=4.6931 c=16.049306.123.808colourless [Be2B3O6F2] [44]
Li2BaSc(BO3)2FhexagonalP63/ma=4.895 c=14.346 [49]
Ba3Zn(BO3)(B2O5)F656.82monoclinicP21/ca = 15.179 b = 7.0064 c = 8.763 β = 100.15° Z=4917.44.755colourless [50]
Ba4Zn2(BO3)2(B2O5)F2937.34monoclinicC2/ca=20.39 b=4.998 c=13.068 β = 192.59 Z=441,3314.679colourless [50]
BaZnBe2(BO3)2F2376.35trigonalP3a = 4.5998, c = 7.7037 Z = 1141.164.427colourless [51]
Rb3Ba3Li2Al4B6O20F [9]
BaCdBe2(BO3)2F2BDBBFP3c1a=4.6808 c=15.788 [8]
Ba1.09Pb0.91Be2(BO3)2F2BPBBFtrigonalP3m1a = 4.7478 c = 8.386, Z = 1163.70UV absorption edge=279.1 nm; birefringence 0.054 at 546.1 nm; 2D [Be3B3O6F3] layer [52]
LiBa2Pb(BO3)2ForthorhombicPmmna=5.487 b=15.96 c=4.034 [49]
KNa3Na6Ca2Ba6Mn6(Ti4+,Nb)6B12Si36O114(O,OH,F)11 Tienshanite hexagonalP6/ma = 16.785, c = 10.454 Z=12,551pale olive green

Uniaxial (-) nω = 1.666 nε = 1.653

Max birefringence δ = 0.013

[53]
Ca6(Fe2+,Mn2+)Y3REE7(SiO4)3(PO4)(B3Si3O18)(BO3)F11 Laptevite-(Ce) trigonalR3ma = 10.804, c = 27.726 Z=32,803density 4.61

dark brown

Uniaxial (-) nω = 1.741(3) nε = 1.720(3)

Max birefringence δ = 0.021

[54]
Ba(Y,Ce)6Si3B6O24F2 Cappelenite-(Y) trigonalP3a = 10.67, c = 4.68 Z=14614.407greenish brown [55]
CaMg[(Ce7Y3)Ca5](SiO4)4(Si2B3AsO18)(BO3)F11 Arrheniusite-(Ce) trigonalR3ma = 10.8082, c = 27.5196 [56]
Gd4(BO2)O5ForthorhombicPmmna=15.746 b=3.8142 c=6.609 Z=2396.96.45colourless [57]
Gd2(BO3)F3
Gd3(BO3)2F3
Gd4[B4O11]F2
Ba2Gd(BO3)2ForthorhombicPnmaa = 7.571 b = 10.424 c = 8.581 Z = 2 [58]
Eu5(BO3)3ForthorhombicPnmaa=7.225 b=14.124 c=9.859 Z=41006.16.306yellow [59]
TlBe2BO3F2TrigonalR32a=4.4387 c=19.942 Z=3340.274.673colourless [60]
LiBa2Pb(BO3)2ForthorhombicPmmna=5.487 b=15.97 c=4.034353.45.887colourless [61]
(Ca,Ce,La,Th)15As5+(As3+0.5,Na0.5)Fe3+Si6B4O40F7 Vicanite-(Ce) trigonalR3ma=10.881 c=27.332,7664.82greenish yellow

Uniaxial (-) nω = 1.757 nε = 1.722

Max birefringence δ = 0.035

[62]

Related Research Articles

Fluorooxoborate is one of a series of anions or salts that contain boron linked to both oxygen and fluorine. Several structures are possible, rings, or chains. They contain [BOxF4−x](x+1)− units BOF32− BO2F23−, or BO3F14−. In addition there can be borate BO3 triangles and BO4 tetrahedrons. These can then be linked by sharing oxygen atoms, and when they do that, the negative charge is reduced. They are distinct from the fluoroborates in which fluorine is bonded to the metals rather than the boron atoms. For example, KBBF, KBe2BO3F2 is a fluoroborate and has more fluorine and oxygen than can be accommodated by the boron atom.

The borate carbonates are mixed anion compounds containing both borate and carbonate ions. Compared to mixed anion compounds containing halides, these are quite rare. They are hard to make, requiring higher temperatures, which are likely to decompose carbonate to carbon dioxide. The reason for the difficulty of formation is that when entering a crystal lattice, the anions have to be correctly located, and correctly oriented. They are also known as carbonatoborates or borocarbonates. Although these compounds have been termed carboborate, that word also refers to the C=B=C5− anion, or CB11H12 anion. This last anion should be called 1-carba-closo-dodecaborate or monocarba-closo-dodecaborate.

The iodate fluorides are chemical compounds which contain both iodate and fluoride anions (IO3 and F). In these compounds fluorine is not bound to iodine as it is in fluoroiodates.

The sulfate fluorides are double salts that contain both sulfate and fluoride anions. They are in the class of mixed anion compounds. Some of these minerals are deposited in fumaroles.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.

The borophosphates are mixed anion compounds containing borate and phosphate anions, which may be joined together by a common oxygen atom. Compounds that contain water or hydroxy groups can also be included in the class of compounds.

The borotellurates are heteropoly anion compounds which have tellurate groups attached to boron atoms. The ratio of tellurate to borate reflects the degree of condensation. In [TeO4(BO3)2]8- the anions are linked into a chain. In [TeO2(BO3)4]10− the structure is zero dimensional with isolated anions. These arrangements of oxygen around boron and tellurium can have forms resembling silicates. The first borotellurates to be discovered were the mixed sodium rare earth compounds in 2015.

Borate sulfates are mixed anion compounds containing separate borate and sulfate anions. They are distinct from the borosulfates where the borate is linked to a sulfate via a common oxygen atom.

Borate sulfides are chemical mixed anion compounds that contain any kind of borate and sulfide ions. They are distinct from thioborates in which sulfur atoms replace oxygen in borates. There are also analogous borate selenides, with selenium ions instead of sulfur.

The borate chlorides are chemical compounds that contain both borate ions and chloride ions. They are mixed anion compounds. Many of them are minerals. Those minerals that crystallise with water (hydrates) may be found in evaporite deposits formed when mineral water has dried out.

Borate phosphates are mixed anion compounds containing separate borate and phosphate anions. They are distinct from the borophosphates where the borate is linked to a phosphate via a common oxygen atom. The borate phosphates have a higher ratio of cations to number of borates and phosphates, as compared to the borophosphates.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

The borate iodides are mixed anion compounds that contain both borate and iodide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate bromides.

Selenide borates, officially known as borate selenides, are chemical mixed anion compounds that contain any kind of borate and selenide ions. They are distinct from selenoborates in which selenium atoms replace oxygen in borates. There are also analogous borate sulfides, with sulfur ions instead of selenium.

Selenogallates are chemical compounds which contain anionic units of selenium connected to gallium. They can be considered as gallates where selenium substitutes for oxygen. Similar compounds include the thiogallates and selenostannates. They are in the category of chalcogenotrielates or more broadly chalcogenometallates.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

Iodate nitrates are mixed anion compounds that contain both iodate and nitrate anions.

A fluorooxoiodate or fluoroiodate is a chemical compound or ion derived from iodate, by substituting some of the oxygen by fluorine. They have iodine in the +5 oxidation state. The iodine atoms have a stereochemically active lone-pair of electrons. Many are non-centrosymmetric, and are second harmonic generators (SHG) of intense light shining through them. They are under investigation as materials for non-linear optics, such as for generating ultraviolet light from visible or infrared lasers.

When values of birefingence are very high, the property is termed giant birefringence which more generically is called giant optical anisotropy. Values for giant birefringence exceed 0.3. Much bigger numbers are termed "colossal birefringence". These are achieved using nanostructures.

References

  1. "Berborite". www.mindat.org. Retrieved 2020-12-15.
  2. Peng, Guang; Ye, Ning; Lin, Zheshuai; Kang, Lei; Pan, Shilie; Zhang, Min; Lin, Chensheng; Long, Xifa; Luo, Min; Chen, Yu; Tang, Yu-Huan (2018-07-16). "NH 4 Be 2 BO 3 F 2 and γ-Be 2 BO 3 F: Overcoming the Layering Habit in KBe 2 BO 3 F 2 for the Next-Generation Deep-Ultraviolet Nonlinear Optical Materials". Angewandte Chemie. 130 (29): 9106–9110. Bibcode:2018AngCh.130.9106P. doi:10.1002/ange.201803721. S2CID   242082788.
  3. Mei, Linfeng; Wang, Yebin; Chen, Chunagtian (January 1994). "Crystal structure of sodium beryllium borate fluoride". Materials Research Bulletin. 29 (1): 81–87. doi:10.1016/0025-5408(94)90108-2.
  4. "Pertsevite-(F)". www.mindat.org. Retrieved 2020-12-14.
  5. "Fluoborite". www.mindat.org. Retrieved 2020-12-14.
  6. "Sulfoborite". www.mindat.org. Retrieved 2020-12-15.
  7. Cheng, Bingliang; Ma, Wenjuan; Tudi, Abudukadi; Liu, Changyou; Long, Xifa; Yang, Yun (2023-07-26). "Introduction of the [B–O/F] Units Enhances the Band Gap and Birefringence from Na 6 Mg 3 B 10 O 18 F 6 to K 3 NaB 10 O 16 F 2". Inorganic Chemistry. 62 (31): 12187–12191. doi:10.1021/acs.inorgchem.3c01954. ISSN   0020-1669. PMID   37494127. S2CID   260200530.
  8. 1 2 Guo, Ruixin; Jiang, Xingxing; Guo, Shu; Xia, Mingjun; Liu, Lijuan; Lin, Zheshuai; Wang, Xiaoyang (2022-05-16). "Realization of Enlarged Birefringence from BaCdBe 2 (BO 3 ) 2 F 2 to NaMgBe 2 (BO 3 ) 2 F via the Cation Size Effect as a Potential Deep-Ultraviolet Birefringent Material". Inorganic Chemistry. 61 (19): 7624–7630. doi:10.1021/acs.inorgchem.2c00880. ISSN   0020-1669.
  9. 1 2 3 4 5 6 Wang, Ya; Han, Jian; Huang, Junben; Yang, Zhihua; Pan, Shilie (2020-01-06). "Al 8 (BO 3 ) 4 (B 2 O 5 )F 8 : A F-Containing Aluminum Borate Featuring Two Types of Isolated B–O Groups". Inorganic Chemistry. 59 (1): 810–817. doi:10.1021/acs.inorgchem.9b03067. ISSN   0020-1669. PMID   31877030. S2CID   209489879.
  10. "Jeremejevite". www.mindat.org. Retrieved 2020-12-14.
  11. "Fluor-dravite". www.mindat.org. Retrieved 2020-12-15.
  12. "Fluor-elbaite". www.mindat.org. Retrieved 2020-12-15.
  13. Huang, Shuzhao; Zhu, Liang; Kruglov, Ivan; Yang, Yun; Yang, Zhihua; Pan, Shilie (2023-05-09). "Two Ultraviolet Optical Crystals K 6 B 12 O 19 F 4 and K 12 B 28 O 48 : The Effects of Metal Cations Size and the F Ions on the Structure". Inorganic Chemistry. 62 (20): 7599–7604. doi:10.1021/acs.inorgchem.3c00519. ISSN   0020-1669. PMID   37158437. S2CID   258567100.
  14. Mei, L.; Huang, X.; Wang, Y.; Wu, Q.; Wu, B.; Chen, C. (January 1995). "Crystal structure of KBe 2 BO 3 F 2". Zeitschrift für Kristallographie. 210 (2): 93–95. Bibcode:1995ZK....210...93M. doi:10.1524/zkri.1995.210.2.93. ISSN   0044-2968.
  15. Xiao, Xue; Li, Zhongliang; Zou, Haifeng; Sun, Qi; Song, Yanhua; Tao, Qianyu; Li, Liang; Zou, Bo (2024-03-01). "Synthesis Design and Properties of Ca 5 (BO 3 ) 3 F: Bi 3+ /Eu 3+ : Insight into Luminescence, Temperature, and Pressure Sensing". Inorganic Chemistry. doi:10.1021/acs.inorgchem.4c00133. ISSN   0020-1669.
  16. Ding, Mengmeng; Xu, JingJing; Wu, Hongping; Yu, Hongwei; Hu, Zhanggui; Wang, Jiyang; Wu, Yicheng (2020). "Li 3 CaB 2 O 5 F: a unique sandwich-like structure with diverse and wide Li ion diffusion pathways". Dalton Transactions. 49 (35): 12184–12188. doi:10.1039/D0DT02423F. ISSN   1477-9226. PMID   32930685. S2CID   221723666.
  17. 1 2 Huang, Hongwei; Yao, Jiyong; Lin, Zheshuai; Wang, Xiaoyang; He, Ran; Yao, Wenjiao; Zhai, Naixia; Chen, Chuangtian (2011-12-27). "Molecular Engineering Design to Resolve the Layering Habit and Polymorphism Problems in Deep UV NLO Crystals: New Structures in MM′Be 2 B 2 O 6 F (M═Na, M′═Ca; M═ K, M′═Ca, Sr)". Chemistry of Materials. 23 (24): 5457–5463. doi:10.1021/cm202870q. ISSN   0897-4756.
  18. Huang, Hongwei; Yao, Jiyong; Lin, Zheshuai; Wang, Xiaoyang; He, Ran; Yao, Wenjiao; Zhai, Naixia; Chen, Chuangtian (2011-12-27). "Molecular Engineering Design to Resolve the Layering Habit and Polymorphism Problems in Deep UV NLO Crystals: New Structures in MM′Be 2 B 2 O 6 F (M═Na, M′═Ca; M═ K, M′═Ca, Sr)". Chemistry of Materials. 23 (24): 5457–5463. doi:10.1021/cm202870q. ISSN   0897-4756.
  19. "Fluor-liddicoatite". www.mindat.org. Retrieved 2020-12-15.
  20. "Fluor-uvite". www.mindat.org. Retrieved 2020-12-15.
  21. Tang, Ru-Ling; Xu, Wei; Xie, Wei-Jie; Hu, Chun-Li (2022). "Sc 2 F 2 (B 2 O 5 ): a deep ultraviolet scandium borate fluoride exhibiting large birefringence induced by the synergistic effect of B 2 O 5 and ScO n F 2 groups". Inorganic Chemistry Frontiers. 9 (20): 5153–5160. doi:10.1039/D2QI01484J. ISSN   2052-1553. S2CID   251431496.
  22. Zhang, Qianzhen; An, Ran; Tudi, Abudukadi; Yang, Zhihua; Long, Xifa; Yang, Yun (2023-09-04). "Rare-Earth Scandium Borate Fluoride with a Deep-Ultraviolet Cutoff Edge". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c02367. ISSN   0020-1669. PMID   37665686. S2CID   261527346.
  23. "Fluor-tsilaisite". www.mindat.org. Retrieved 2020-12-15.
  24. "Fluor-schorl". www.mindat.org. Retrieved 2020-12-15.
  25. "Fluor-buergerite". www.mindat.org. Retrieved 2020-12-15.
  26. "Fluor-feruvite". www.mindat.org. Retrieved 2020-12-15.
  27. Wu, Hongping; Yu, Hongwei; Bian, Qiang; Yang, Zhihua; Han, Shujuan; Pan, Shilie (2014-12-15). "Borate Fluoride and Fluoroborate in Alkali-Metal Borate Prepared by an Open High-Temperature Solution Method". Inorganic Chemistry. 53 (24): 12686–12688. doi:10.1021/ic502625b. ISSN   0020-1669. PMID   25437774.
  28. Chen, Chuangtian; Luo, Siyang; Wang, Xiaoyang; Wang, Guiling; Wen, Xiaohong; Wu, Huaxing; Zhang, Xin; Xu, Zuyan (8 July 2009). "Deep UV nonlinear optical crystal:RbBe_2(BO_3)F_2". Journal of the Optical Society of America B. 26 (8): 1519. Bibcode:2009JOSAB..26.1519C. doi:10.1364/JOSAB.26.001519.
  29. 1 2 Wang, Zheng; Zhang, Min; Su, Xin; Pan, Shilie; Yang, Zhihua; Zhang, Hui; Liu, Lu (2015-01-19). "Q 18 Mg 6 (B 5 O 10 ) 3 (B 7 O 14 ) 2 F (Q=Rb and Cs): New Borates Containing Two Large Isolated Polyborate Anions with Similar Topological Structures". Chemistry - A European Journal. 21 (4): 1414–1419. doi:10.1002/chem.201404738. PMID   25414057.
  30. Liu, Lili; Yang, Yun; Jing, Qun; Dong, Xiaoyu; Yang, Zhihua; Pan, Shilie; Wu, Kui (2016-08-25). "K 5 Ba 10 (BO 3 ) 8 F: A New Potassium Barium Borate Fluoride with a Perovskite-Like Structure". The Journal of Physical Chemistry C. 120 (33): 18763–18770. doi:10.1021/acs.jpcc.6b05489. ISSN   1932-7447.
  31. Guo, Ruixin; Bai, Lei; Wu, Tong; Fan, Feidi; Liu, Lijuan; Wang, Xiaoyang (January 2023). "Growth and characterizations of a new nonlinear optical crystal for 266 nm laser generation: LiSr3Be3B3O9F4". Journal of Crystal Growth. 602: 126971. Bibcode:2023JCrGr.60226971G. doi:10.1016/j.jcrysgro.2022.126971.
  32. Liu, Lijuan; Wang, Lirong; Guo, Ruixin; Hou, Zhanyu; Fang, Zhi; Wang, Xiaoyang (July 2020). "NaSr3Be3B3O9F4 crystal growth and fourth harmonic generation at 266 nm". Journal of Crystal Growth. 542: 125689. Bibcode:2020JCrGr.54225689L. doi:10.1016/j.jcrysgro.2020.125689. S2CID   219020372.
  33. "Proshchenkoite-(Y)". www.mindat.org. Retrieved 2020-12-14.
  34. "Hundholmenite-(Y)". www.mindat.org. Retrieved 2020-12-14.
  35. "Okanoganite-(Y)". www.mindat.org. Retrieved 2020-12-14.
  36. Yang, Yun; Dong, Xiaoyu; Pan, Shilie (2016). "New fluoroborate Cd 8 B 5 O 15 F with two different isolated borate anions prepared by an open high-temperature solution method". Dalton Transactions. 45 (16): 7008–7013. doi:10.1039/C6DT00621C. ISSN   1477-9226. PMID   26988597.
  37. Li, Xingqi; Chu, Dongdong; Jin, Wenqi; Yang, Zhihua; Pan, Shilie; Mutailipu, Miriding (2022-08-08). "Rearrangement of [B 2 O 5 ] Dimers within [B 7 O 14 ] Clusters Enables Enhanced Optical Anisotropy in Li 3 Cs 6 Al 2 B 14 O 28 F". Inorganic Chemistry. 61 (31): 12067–12072. doi:10.1021/acs.inorgchem.2c02347. ISSN   0020-1669. PMID   35894746. S2CID   251102413.
  38. McMillen, Colin D.; Hu, Jia; VanDerveer, Donald; Kolis, Joseph W. (2009-08-01). "Trigonal structures of A Be 2 BO 3 F 2 ( A = Rb, Cs, Tl) crystals". Acta Crystallographica Section B Structural Science. 65 (4): 445–449. doi:10.1107/S0108768109024161. ISSN   0108-7681. PMID   19617679.
  39. Liu, Lili; Yang, Yun; Jing, Qun; Dong, Xiaoyu; Yang, Zhihua; Pan, Shilie; Wu, Kui (2016-08-25). "K 5 Ba 10 (BO 3 ) 8 F: A New Potassium Barium Borate Fluoride with a Perovskite-Like Structure". The Journal of Physical Chemistry C. 120 (33): 18763–18770. doi:10.1021/acs.jpcc.6b05489. ISSN   1932-7447.
  40. Jiang, Dequan; Wang, Ying; Li, Hao; Yang, Zhihua; Pan, Shilie (2018). "BaBOF3 : a new aurivillius-like borate containing two types of F atoms". Dalton Transactions. 47 (15): 5157–5160. doi:10.1039/C8DT00403J. PMID   29557465.
  41. Rashchenko, Sergey V.; Bekker, Tatyana B.; Bakakin, Vladimir V.; Seryotkin, Yurii V.; Kokh, Alexander E.; Gille, Peter; Popov, Arthur I.; Fedorov, Pavel P. (4 July 2013). "A new mechanism of anionic substitution in fluoride borates". Journal of Applied Crystallography. 46 (4): 1081–1084. doi:10.1107/S0021889813015756.
  42. Chen, Yanna; Zhang, Min; Hu, Cong; Wu, Hongping; Yang, Zhihua; Pan, Shilie (2018-10-17). "Li 2 BaSc(BO 3 ) 2 F and LiBa 2 Pb(BO 3 ) 2 F with Layered Structures featuring Special Li−O/F Configurations". Chemistry - A European Journal. 24 (58): 15477–15481. doi:10.1002/chem.201804126. PMID   30230058.
  43. Guo, Shu; Jiang, Xingxing; Liu, Lijuan; Xia, Mingjun; Fang, Zhi; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian (2016-12-27). "BaBe 2 BO 3 F 3 : A KBBF-Type Deep-Ultraviolet Nonlinear Optical Material with Reinforced [Be 2 BO 3 F 2 ] ∞ Layers and Short Phase-Matching Wavelength". Chemistry of Materials. 28 (24): 8871–8875. doi:10.1021/acs.chemmater.6b04403. ISSN   0897-4756.
  44. 1 2 Guo, Shu; Jiang, Xingxing; Xia, Mingjun; Liu, Lijuan; Fang, Zhi; Huang, Qian; Wu, Ruofei; Wang, Xiaoyang; Lin, Zheshuai; Chen, Chuangtian (2017-10-02). "Structural Design of Two Fluorine–Beryllium Borates BaMBe2(BO3)2F2 (M = Mg, Ca) Containing Flexible Two-Dimensional [Be3B3O6F3]∞ Single Layers without Structural Instability Problems". Inorganic Chemistry. 56 (19): 11451–11454. doi:10.1021/acs.inorgchem.7b01627. ISSN   0020-1669. PMID   28885824.
  45. Bai, Yunjie; Wang, Xinyue; Huang, Hongbo; Dou, Danyang; Chen, Cheng; Zhang, Bingbing; Wang, Ying (2023-09-08). "Ba 3.75 MgB 7 O 14 F 2.5 : A Mixed Alkaline-Earth Metal Borate Fluoride with Short Ultraviolet Cutoff Edge and Large Birefringence". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c02532. ISSN   0020-1669. PMID   37681248. S2CID   261609707.
  46. Hu, ζ G.; Maramatsu, κ.; Kanehisa, ν.; Yoshimura, M.; Mori, Y.; Sasaki, T.; Kai, Y. (December 2003). "Reinvestigation of the crystal structure of barium aluminum borate difluoride, BaAlBO3F2, a new nonlinear optical material". Zeitschrift für Kristallographie - New Crystal Structures. 218 (JG): 1–2. doi: 10.1524/ncrs.2003.218.jg.1 . ISSN   2197-4578. S2CID   201282179.
  47. Liu, Lili; Yang, Yun; Jing, Qun; Dong, Xiaoyu; Yang, Zhihua; Pan, Shilie; Wu, Kui (2016-08-25). "K 5 Ba 10 (BO 3 ) 8 F: A New Potassium Barium Borate Fluoride with a Perovskite-Like Structure". The Journal of Physical Chemistry C. 120 (33): 18763–18770. doi:10.1021/acs.jpcc.6b05489. ISSN   1932-7447.
  48. Li, R. K.; Chen, Peng (2010-01-15). "KBa 7 Mg 2 B 14 O 28 F 5 , a new borate with an unusual heptaborate group and double perovskite unit". Acta Crystallographica Section C Crystal Structure Communications. 66 (1): i7–i8. doi:10.1107/S0108270109054341. ISSN   0108-2701. PMID   20048410.
  49. 1 2 Chen, Yanna; Zhang, Min; Hu, Cong; Wu, Hongping; Yang, Zhihua; Pan, Shilie (2018-10-17). "Li 2 BaSc(BO 3 ) 2 F and LiBa 2 Pb(BO 3 ) 2 F with Layered Structures featuring Special Li−O/F Configurations". Chemistry – A European Journal. 24 (58): 15477–15481. doi:10.1002/chem.201804126. ISSN   0947-6539. PMID   30230058. S2CID   52294586.
  50. 1 2 Mutailipu, Miriding; Su, Xin; Zhang, Min; Yang, Zhihua; Pan, Shilie (2017). "Ba n+2 Zn n (BO 3 ) n (B 2 O 5 )F n (n = 1, 2): new members of the zincoborate fluoride series with two kinds of isolated B–O units". Inorganic Chemistry Frontiers. 4 (2): 281–288. doi:10.1039/C6QI00467A. ISSN   2052-1553.
  51. Guo, Ruixin; Liu, Xiaomeng; Tao, Ce; Tang, Changcheng; Xia, Mingjun; Liu, Lijuan; Lin, Zheshuai; Wang, Xiaoyang (2021). "BaZnBe 2 (BO 3 ) 2 F 2 : a novel zinc-beryllium borate with SBBO-type structure overcoming the polymorphism problem". Dalton Transactions. 50 (6): 2138–2142. doi:10.1039/D0DT04153J. ISSN   1477-9226. PMID   33491694. S2CID   231701941.
  52. Guo, Ruixin; Guo, Shu; Xia, Mingjun; Liu, Lijuan; Li, Minjuan; Zhao, Sangen; Wang, Xiaoyang (2023-02-20). "Ba 1.09 Pb 0.91 Be 2 (BO 3 ) 2 F 2 : The First Pb-Containing Beryllium Borate Fluoride with Trigonal Prismatic PbO 6 and 2D [Be 3 B 3 O 6 F 3 ] ∞ Layers". Inorganic Chemistry. 62 (9): 3860–3865. doi:10.1021/acs.inorgchem.2c04122. ISSN   0020-1669. PMID   36802565. S2CID   257067883.
  53. "Tienshanite". www.mindat.org. Retrieved 2020-12-14.
  54. "Laptevite-(Ce)". www.mindat.org. Retrieved 2020-12-14.
  55. "Cappelenite-(Y)". www.mindat.org. Retrieved 2020-12-14.
  56. "Arrheniusite-(Ce)". www.mindat.org. Retrieved 2020-12-14.
  57. Höppe, Henning A. (1 November 2015). "Gd4(BO2)O5F – a gadolinium borate fluoride oxide comprising a linear BO2 moiety". Zeitschrift für Naturforschung B. 70 (11): 769–774. doi:10.1515/znb-2015-0112. S2CID   197372271.
  58. Chen, Yuwei; Gong, Pifu; Guo, Ruixin; Fan, Feidi; Shen, Jun; Zhang, Guochun; Tu, Heng (2023-09-25). "Improvement on Magnetocaloric Effect through Structural Evolution in Gadolinium Borate Halides Ba 2 Gd(BO 3 ) 2 X (X = F, Cl)". Inorganic Chemistry. 62 (38): 15584–15592. doi:10.1021/acs.inorgchem.3c02139. ISSN   0020-1669.
  59. Kazmierczak, Karolina; Höppe, Henning A. (June 2010). "Synthesis, Crystal Structure and Optical Spectra of Europium Borate Fluoride Eu5(BO3)3F". European Journal of Inorganic Chemistry. 2010 (18): 2678–2681. doi:10.1002/ejic.201000105.
  60. McMillen, Colin D.; Hu, Jia; VanDerveer, Donald; Kolis, Joseph W. (2009-08-01). "Trigonal structures of A Be 2 BO 3 F 2 ( A = Rb, Cs, Tl) crystals". Acta Crystallographica Section B Structural Science. 65 (4): 445–449. doi:10.1107/S0108768109024161. ISSN   0108-7681. PMID   19617679.
  61. Chen, Yanna; Zhang, Min; Hu, Cong; Wu, Hongping; Yang, Zhihua; Pan, Shilie (2018-10-17). "Li 2 BaSc(BO 3 ) 2 F and LiBa 2 Pb(BO 3 ) 2 F with Layered Structures featuring Special Li−O/F Configurations". Chemistry - A European Journal. 24 (58): 15477–15481. doi:10.1002/chem.201804126. PMID   30230058.
  62. "Vicanite-(Ce)". www.mindat.org. Retrieved 2020-12-14.