Lithium borate

Last updated
Lithium tetraborate
EntryWithCollCode419669.png
Names
Other names
Lithium borate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.364 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-514-3
PubChem CID
UNII
  • InChI=1S/B4O7.2Li/c5-1-9-3(7)11-4(8)10-2-6;;/q-2;2*+1 Yes check.svgY
    Key: PSHMSSXLYVAENJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/B4O7.2Li/c5-1-9-3(7)11-4(8)10-2-6;;/q-2;2*+1
    Key: PSHMSSXLYVAENJ-UHFFFAOYAA
  • [Li+].[Li+].O=BOB([O-])OB([O-])OB=O
Properties
Li2B4O7
Molar mass 169.11 g/mol
Appearancewhite powder
Density 2.4 g/cm3, solid
Melting point 917 °C (1,683 °F; 1,190 K)
moderately soluble
Hazards
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
2
0
0
Safety data sheet (SDS) External MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Lithium borate, also known as lithium tetraborate is an inorganic compound with the formula Li2B4O7. A colorless solid, lithium borate is used in making glasses and ceramics.

Contents

Structure

Its structure consists of a polymeric borate backbone. The Li+ centers are bound to four and five oxygen ligands. Boron centers are trigonal and tetrahedral. [1] [2]

Borate backbone of Li2B4O7. 65930-ICSD.png
Borate backbone of Li2B4O7.

Lithium borate can be used in the laboratory as LB buffer for gel electrophoresis of DNA and RNA. It is also used in the borax fusion method to vitrify mineral powder specimens for analysis by WDXRF spectroscopy. [3]

See also

Related Research Articles

A borate is any of a range of boron oxyanions, anions containing boron and oxygen, such as orthoborate BO3−3, metaborate BO−2, or tetraborate B4O2−7; or any salt of such anions, such as sodium metaborate, Na+[BO2] and borax (Na+)2[B4O7]2−. The name also refers to esters of such anions, such as trimethyl borate B(OCH3)3.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

<span class="mw-page-title-main">Lithium acetate</span> Chemical compound

Lithium acetate (CH3COOLi) is a salt of lithium and acetic acid. It is often abbreviated as LiOAc.

<span class="mw-page-title-main">Phenyllithium</span> Chemical compound

Phenyllithium is an organometallic agent with the empirical formula C6H5Li. It is most commonly used as a metalating agent in organic syntheses and a substitute for Grignard reagents for introducing phenyl groups in organic syntheses. Crystalline phenyllithium is colorless; however, solutions of phenyllithium are various shades of brown or red depending on the solvent used and the impurities present in the solute.

Caesium lithium borate or cesium lithium borate (CsLiB6O10), also known as CLBO, is a non-linear crystal for ultraviolet applications and generates the fourth and fifth harmonics of the Nd:YAG fundamental laser wavelength (1064 nm).

<span class="mw-page-title-main">Lithium sulfate</span> Chemical compound

Lithium sulfate is a white inorganic salt with the formula Li2SO4. It is the lithium salt of sulfuric acid.

Lithium metaborate is a chemical compound of lithium, boron, and oxygen with elemental formula LiBO2. It is often encountered as a hydrate, LiBO2·nH2O, where n is usually 2 or 4. However, these formulas do not describe the actual structure of the solids.

<span class="mw-page-title-main">Lithium borohydride</span> Chemical compound

Lithium borohydride (LiBH4) is a borohydride and known in organic synthesis as a reducing agent for esters. Although less common than the related sodium borohydride, the lithium salt offers some advantages, being a stronger reducing agent and highly soluble in ethers, whilst remaining safer to handle than lithium aluminium hydride.

<span class="mw-page-title-main">Lithium bis(trimethylsilyl)amide</span> Chemical compound

Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(Si(CH3)3)2. It is commonly abbreviated as LiHMDS or Li(HMDS) (lithium hexamethyldisilazide - a reference to its conjugate acid HMDS) and is primarily used as a strong non-nucleophilic base and as a ligand. Like many lithium reagents, it has a tendency to aggregate and will form a cyclic trimer in the absence of coordinating species.

<span class="mw-page-title-main">Disodium octaborate</span> Chemical compound

Disodium octaborate is a borate of sodium, a chemical compound of sodium, boron, and oxygen — a salt with elemental formula Na2B8O13 or (Na+)2[B8O13]2−, also written as Na2O·4B2O3. It is a colorless crystalline solid, soluble in water.

LB buffer, also known as lithium borate buffer, is a buffer solution used in agarose electrophoresis, typically for the separation of nucleic acids such as DNA and RNA. It is made up of Lithium borate.

<span class="mw-page-title-main">Barium borate</span> Chemical compound

Barium borate is an inorganic compound, a borate of barium with a chemical formula BaB2O4 or Ba(BO2)2. It is available as a hydrate or dehydrated form, as white powder or colorless crystals. The crystals exist in the high-temperature α phase and low-temperature β phase, abbreviated as BBO; both phases are birefringent, and BBO is a common nonlinear optical material.

<span class="mw-page-title-main">Lithium tetrakis(pentafluorophenyl)borate</span> Chemical compound

Lithium tetrakis(pentafluorophenyl)borate is the lithium salt of the weakly coordinating anion (B(C6F5)4). Because of its weakly coordinating abilities, lithium tetrakis(pentafluorophenyl)borate makes it commercially valuable in the salt form in the catalyst composition for olefin polymerization reactions and in electrochemistry. It is a water-soluble compound. Its anion is closely related to the non-coordinating anion known as BARF. The tetrakis(pentafluorophenyl)borates have the advantage of operating on a one-to-one stoichiometric basis with Group IV transition metal polyolefin catalysts, unlike methylaluminoxane (MAO) which may be used in large excess.

<span class="mw-page-title-main">Lithium imide</span> Chemical compound

Lithium imide is an inorganic compound with the chemical formula Li2NH. This white solid can be formed by a reaction between lithium amide and lithium hydride.

<span class="mw-page-title-main">Lithium iridate</span> Chemical compound

Lithium iridate, Li2IrO3, is a chemical compound of lithium, iridium and oxygen. It forms black crystals with three slightly different layered atomic structures, α, β, and sometimes γ. Lithium iridate exhibits metal-like, temperature-independent electrical conductivity, and changes its magnetic ordering from paramagnetic to antiferromagnetic upon cooling to 15 K.

Mixed-anion compounds, heteroanionic materials or mixed-anion materials are chemical compounds containing cations and more than one kind of anion. The compounds contain a single phase, rather than just a mixture.

The borate oxalates are chemical compounds containing borate and oxalate anions. Where the oxalate group is bound to the borate via oxygen, a more condensed anion is formed that balances less cations. These can be termed boro-oxalates, bis(oxalato)borates, or oxalatoborates or oxalate borates. The oxalatoborates are heterocyclic compounds with a ring containing -O-B-O-. Bis(oxalato)borates are spiro compounds with rings joined at the boron atom.

The borate bromides are mixed anion compounds that contain borate and bromide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate iodides.

The borate iodides are mixed anion compounds that contain both borate and iodide anions. They are in the borate halide family of compounds which also includes borate fluorides, borate chlorides, and borate bromides.

Lithium tritelluride is an intercalary compound of lithium and tellurium with empirical formula LiTe
3
. It is one of three known members of the Li-Te system, the others being the raw metals and lithium telluride.

References

  1. Sennova, N.; Bubnova, R.; Shepelev, Yu.; Filatov, S.; Yakovleva, O. (2007). "Li2B4O7 Crystal structure in anharmonic approximation at 20, 200, 400 and 500 °C". Journal of Alloys and Compounds. 428 (1–2): 290–296. doi:10.1016/j.jallcom.2006.03.049.
  2. Natalia Sennova. R. S. Bubnova; G. Cordier; B. Albert; S. K. Filatov; L. Isaenko (2008). "Temperature‐dependent Changes of the Crystal Structure of Li2B4O7". Zeitschrift für Anorganische und Allgemeine Chemie. 634 (14): 2601–2607. doi:10.1002/zaac.200800295.
  3. Ron Jenkins, X-Ray Fluorescence Spectrometry, Second Edition, J. Wiley & Sons Inc., 1999, ISBN   0-471-29942-1, p 146-7.