Lepidolite

Last updated
Lepidolite
Boromuscovite-Lepidolite-ch38a.jpg
General
Category Phyllosilicate
Formula
(repeating unit)
K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2
IMA symbol Lpd [1]
Strunz classification 9.EC.20
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m, Cm
Unit cell a = 5.209(2)  Å, b = 9.011(5) Å,
c = 10.149(5) Å;
β = 100:77(4)°; Z = 2
Identification
ColorPink, light purple, purple, rose-red, violet-gray, yellowish, white, colorless other colors possible but are rare.
Crystal habit Tabular to prismatic pseudohexagonal crystals, scaly aggregates and massive
Twinning Rare, composition plane {001}
Cleavage {001} perfect
Fracture Uneven
Mohs scale hardness2.5–3
Luster Vitreous to pearly
Streak White
Diaphaneity Transparent to translucent
Specific gravity 2.8–2.9
Optical propertiesBiaxial (−)
Refractive index nα=1.525–1.548, nβ=1.551–1.58, nγ=1.554–1.586
Birefringence 0.0290–0.0380
Pleochroism X = almost colorless; Y = Z = pink, pale violet
2V angle 0° – 58° measured
References [2] [3]

Lepidolite is a lilac-gray or rose-colored member of the mica group of minerals with chemical formula K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2. [2] [3] It is the most abundant lithium-bearing mineral [4] and is a secondary source of this metal. It is the major source of the alkali metal rubidium.

Contents

Lepidolite is found with other lithium-bearing minerals, such as spodumene, in pegmatite bodies. It has also been found in high-temperature quartz veins, greisens and granite.

Description

Lepidolite is a phyllosilicate mineral [5] and a member of the polylithionite-trilithionite series. [6] Lepidolite is part of a three-part series consisting of polylithionite, lepidolite, and trilithionite. All three minerals share similar properties and are caused because of varying ratios of lithium and aluminum in their chemical formulas. The Li:Al ratio varies from 2:1 in polylithionite up to 1.5:1.5 in trilithionite. [7] [8]

Lepidolite is found naturally in a variety of colors, mainly pink, purple, and red, but also gray and, rarely, yellow and colorless. Because lepidolite is a lithium-bearing mica, it is often wrongly assumed that lithium is what causes the pink hues that are so characteristic of this mineral. Instead, it is trace amounts of manganese that cause the pink, purple, and red colors. [9] [10]

Structure and composition

Lepidolite belongs to the group of trioctahedral micas, [8] with a structure resembling biotite. This structure is sometimes described as TOT-c. The crystal consists of stacked TOT layers weakly bound together by potassium ions (c). Each TOT layer consists of two outer T (tetrahedral) sheets in which silicon or aluminium ions each bind with four oxygen atoms, which in turn bind to other aluminium and silicon to form the sheet structure. The inner O (octahedral) sheet contains iron or magnesium ions each bonded to six oxygen, fluoride, or hydroxide ions. In biotite, silicon occupies three out of every four tetrahedal sites in the crystal and aluminium occupies the remaining tetrahedral sites, while magnesium or iron fill all the available octahedral sites. [11]

Lepidolite shares this structure, but aluminium and lithium substitute for magnesium and iron in the octahedral sites. If nearly equal quantities of aluminium and lithium occupy the octahedral sites, the resulting mineral is trilithionite, KLi1.5Al1.5(AlSi3)O10(F,OH)2 If lithium occupies two out of three octahedral sites and aluminium the remaining octahedra site, then charge balance can be preserved only if silicon occupies all the tetrahedral sites. The result is polylithionite, KLi2AlSi4O10(F,OH)2. Lepidolite has a composition intermediate between these end members. [8]

Fluoride ions can substitute for some of the hydroxide in the structure, while sodium, rubidium, or caesium may substitute in small quantities for potassium. [12]

Occurrences

Lepidolite is associated with other lithium-bearing minerals like spodumene in pegmatite bodies. It is the major source of the alkali metal rubidium. [13] In 1861, Robert Bunsen and Gustav Kirchhoff extracted 150 kg (330 lb) of lepidolite to yield a few grams of rubidium salts for analysis, and therefore discovered the new element rubidium. [14] [15]

It occurs in granite pegmatites, in some high-temperature quartz veins, greisens and granites. Associated minerals include quartz, feldspar, spodumene, amblygonite, tourmaline, columbite, cassiterite, topaz and beryl. [2]

Notable occurrences include Brazil; Ural Mountains, Russia; California, United States; Tanco Mine, Bernic Lake, Manitoba, Canada; and Madagascar. [2]

Related Research Articles

<span class="mw-page-title-main">Amblygonite</span>

Amblygonite is a fluorophosphate mineral, (Li,Na)AlPO4(F,OH), composed of lithium, sodium, aluminium, phosphate, fluoride and hydroxide. The mineral occurs in pegmatite deposits and is easily mistaken for albite and other feldspars. Its density, cleavage and flame test for lithium are diagnostic. Amblygonite forms a series with montebrasite, the low fluorine endmember. Geologic occurrence is in granite pegmatites, high-temperature tin veins, and greisens. Amblygonite occurs with spodumene, apatite, lepidolite, tourmaline, and other lithium-bearing minerals in pegmatite veins. It contains about 10% lithium, and has been utilized as a source of lithium. The chief commercial sources have historically been the deposits of California and France.

<span class="mw-page-title-main">Biotite</span> Group of phyllosilicate minerals within the mica group

Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula K(Mg,Fe)3AlSi3O10(F,OH)2. It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite and eastonite. Biotite was regarded as a mineral species by the International Mineralogical Association until 1998, when its status was changed to a mineral group. The term biotite is still used to describe unanalysed dark micas in the field. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Mica</span> Group of phyllosilicate minerals

Micas are a group of silicate minerals whose outstanding physical characteristic is that individual mica crystals can easily be split into extremely thin elastic plates. This characteristic is described as perfect basal cleavage. Mica is common in igneous and metamorphic rock and is occasionally found as small flakes in sedimentary rock. It is particularly prominent in many granites, pegmatites, and schists, and "books" of mica several feet across have been found in some pegmatites.

<span class="mw-page-title-main">Muscovite</span> Hydrated phyllosilicate mineral

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

<span class="mw-page-title-main">Pegmatite</span> Igneous rock with very large interlocked crystals

A pegmatite is an igneous rock showing a very coarse texture, with large interlocking crystals usually greater in size than 1 cm (0.4 in) and sometimes greater than 1 meter (3 ft). Most pegmatites are composed of quartz, feldspar, and mica, having a similar silicic composition to granite. However, rarer intermediate composition and mafic pegmatites are known.

<span class="mw-page-title-main">Pyroxene</span> Group of inosilicate minerals with single chains of silica tetrahedra

The pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. Pyroxenes have the general formula XY(Si,Al)2O6, where X represents calcium (Ca), sodium (Na), iron or magnesium (Mg) and more rarely zinc, manganese or lithium, and Y represents ions of smaller size, such as chromium (Cr), aluminium (Al), magnesium (Mg), cobalt (Co), manganese (Mn), scandium (Sc), titanium (Ti), vanadium (V) or even iron. Although aluminium substitutes extensively for silicon in silicates such as feldspars and amphiboles, the substitution occurs only to a limited extent in most pyroxenes. They share a common structure consisting of single chains of silica tetrahedra. Pyroxenes that crystallize in the monoclinic system are known as clinopyroxenes and those that crystallize in the orthorhombic system are known as orthopyroxenes.

<span class="mw-page-title-main">Spodumene</span> Pyroxene, inosilicate mineral rich in lithium

Spodumene is a pyroxene mineral consisting of lithium aluminium inosilicate, LiAl(SiO3)2, and is a commercially important source of lithium. It occurs as colorless to yellowish, purplish, or lilac kunzite (see below), yellowish-green or emerald-green hiddenite, prismatic crystals, often of great size. Single crystals of 14.3 m (47 ft) in size are reported from the Black Hills of South Dakota, United States.

<span class="mw-page-title-main">Petalite</span> Silicate mineral, used in ceramic glazing

Petalite, also known as castorite, is a lithium aluminum phyllosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. Petalite (and secondary spodumene formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones.

<span class="mw-page-title-main">Zinnwaldite</span>

Zinnwaldite, KLiFeAl(AlSi3)O10(OH,F)2, potassium lithium iron aluminium silicate hydroxide fluoride is a silicate mineral in the mica group. The IMA status is as a series between siderophyllite (KFe2Al(Al2Si2)O10(F,OH)2) and polylithionite (KLi2AlSi4O10(F,OH)2) and not considered a valid mineral species.

<span class="mw-page-title-main">Chlorite group</span> Type of mineral

The chlorites are the group of phyllosilicate minerals common in low-grade metamorphic rocks and in altered igneous rocks. Greenschist, formed by metamorphism of basalt or other low-silica volcanic rock, typically contains significant amounts of chlorite.

<span class="mw-page-title-main">Cleavage (crystal)</span> Tendency of crystalline materials

Cleavage, in mineralogy and materials science, is the tendency of crystalline materials to split along definite crystallographic structural planes. These planes of relative weakness are a result of the regular locations of atoms and ions in the crystal, which create smooth repeating surfaces that are visible both in the microscope and to the naked eye. If bonds in certain directions are weaker than others, the crystal will tend to split along the weakly bonded planes. These flat breaks are termed "cleavage". The classic example of cleavage is mica, which cleaves in a single direction along the basal pinacoid, making the layers seem like pages in a book. In fact, mineralogists often refer to "books of mica".

<span class="mw-page-title-main">Lithiophilite</span>

Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend", as lithiophilite is usually found with lithium.

<span class="mw-page-title-main">Pollucite</span> Zeolite mineral

Pollucite is a zeolite mineral with the formula (Cs,Na)2Al2Si4O12·2H2O with iron, calcium, rubidium and potassium as common substituting elements. It is important as a significant ore of caesium and sometimes rubidium. It forms a solid solution series with analcime. It crystallizes in the isometric–hexoctahedral crystal system as colorless, white, gray, or rarely pink and blue masses. Well formed crystals are rare. It has a Mohs hardness of 6.5 and a specific gravity of 2.9. It has a brittle fracture and no cleavage.

<span class="mw-page-title-main">Eucryptite</span>

Eucryptite is a lithium bearing aluminium silicate mineral with formula LiAlSiO4. It crystallizes in the trigonal - rhombohedral crystal system. It typically occurs as granular to massive in form and may pseudomorphically replace spodumene. It has a brittle to conchoidal fracture and indistinct cleavage. It is transparent to translucent and varies from colorless to white to brown. It has a Mohs hardness of 6.5 and a specific gravity of 2.67. Optically it is uniaxial positive with refractive index values of nω = 1.570 - 1.573 and nε = 1.583 - 1.587.

Bityite is considered a rare mineral, and it is an endmember to the margarite mica sub-group found within the phyllosilicate group. The mineral was first described by Antoine François Alfred Lacroix in 1908, and later its chemical composition was concluded by Professor Hugo Strunz. Bityite has a close association with beryl, and it generally crystallizes in pseudomorphs after it, or in cavities associated with reformed beryl crystals. The mineral is considered a late-stage constituent in lithium bearing pegmatites, and has only been encountered in a few localities throughout the world. The mineral was named by Lacroix after Mt. Bity, Madagascar from where it was first discovered.

<span class="mw-page-title-main">Fluor-liddicoatite</span>

Fluor-liddicoatite is a rare member of the tourmaline group of minerals, elbaite subgroup, and the theoretical calcium endmember of the elbaite-fluor-liddicoatite series; the pure end-member has not yet been found in nature. Fluor-liddicoatite is indistinguishable from elbaite by X-ray diffraction techniques. It forms a series with elbaite and probably also with olenite. Liddiocoatite is currently a non-approved mineral name, but Aurisicchio et al. (1999) and Breaks et al. (2008) found OH-dominant species. Formulae are

<span class="mw-page-title-main">Cookeite</span> Mineral species of the silicate group and the phyllosilicate subgroup, part of the chlorite family.

Cookeite is a mineral species of the silicate group and the phyllosilicate subgroup, part of the chlorite family, with the formula LiAl4(Si3Al)O10(OH)8. This soft, low-density mineral of variable color has a crystalline structure made up of alternating layers LiAl2(OH)6 and Al2O4(OH)2Si8O12 having several polytypes. Cookeite is often found as a product of hydrothermal alteration of silicates in pegmatites. It forms at relatively low temperatures (below 200 °C) and variable pressures.

Filipstadite is a very rare mineral of the spinel group, with the formula (Mn,Mg)(Sb5+0.5Fe3+0.5)O4. It is isometric, although it was previously though to be orthorhombic. When compared to a typical spinel, both the octahedral and tetrahedral sites are split due to cation ordering. Filipstadite is chemically close to melanostibite. The mineral comes from Långban, Sweden, a manganese skarn deposit famous for many rare minerals.

<span class="mw-page-title-main">Harding Pegmatite Mine</span> Adit mine in New Mexico, US

The Harding Pegmatite Mine is a former adit mine that extracted lithium, tantalum, and beryllium from a Precambrian pegmatite sill. It ceased operations in 1958 and its owner, Arthur Montgomery, donated it to the University of New Mexico, which runs the site as an outdoor geology laboratory with mineral collecting permitted on a small scale.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (2005). "Lepidolite" (PDF). Handbook of Mineralogy. Mineral Data Publishing. Retrieved 14 March 2022.
  3. 1 2 Barthelmy, David (2014). "Lepidolite Mineral Data". Webmineral.com. Retrieved 19 March 2022.
  4. Deer, W.A.; Howie, R.A.; Zussman, J. (1966). An Introduction to the Rock Forming Minerals. London: Longman. p. 218. ISBN   0-582-44210-9.
  5. Hurlbut, Cornelius S.; Klein, Cornelis (1985), Manual of Mineralogy, Wiley, (20th ed.) ISBN   0-471-80580-7
  6. Lepidolite on Mindat.org
  7. Polylithionite-Trilithionite Series, Mindat.org
  8. 1 2 3 Rieder, M.; Cavazzini, G.; D’yakonov, Yu. S.; Frank-Kamenetskii, V. A.; Gottardi, G.; Guggenheim, S.; Koval’, P. V.; Müller, G.; Neiva, A. M. R.; Radoslovich, E. W.; Robert, J.-L.; Sassi, F. P.; Takeda, H.; Weiss, Z.; Wones, D. R. (April 1999). "Nomenclature of the micas". Mineralogical Magazine. 63 (2): 267–279. Bibcode:1999MinM...63..267R. doi:10.1180/minmag.1999.063.2.13. S2CID   62814673.
  9. King, Hobart M. "Lepidolite: A pink to purple mica, a source of lithium, an ornamental stone, a gem material". geology.com. Retrieved 19 March 2022.
  10. London, David (4 March 2017). "Reading Pegmatites: Part 3—What Lithium Minerals Say". Rocks & Minerals. 92 (2): 144–157. Bibcode:2017RoMin..92..144L. doi:10.1080/00357529.2017.1252636. S2CID   132383641.
  11. Klein, Cornelis; Hurlbut, Cornelius S. Jr. (1993). Manual of mineralogy : (after James D. Dana) (21st ed.). New York: Wiley. pp. 498–507. ISBN   047157452X.
  12. Klein & Hurlbut 1993, p. 519.
  13. Wise, M. A. (1995). "Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites". Mineralogy and Petrology. 55 (13): 203–215. Bibcode:1995MinPe..55..203W. doi:10.1007/BF01162588. S2CID   140585007.
  14. G. Kirchhoff, R. Bunsen (1861). "Chemische Analyse durch Spectralbeobachtungen" (PDF). Annalen der Physik und Chemie . 189 (7): 337–381. Bibcode:1861AnP...189..337K. doi:10.1002/andp.18611890702.
  15. Weeks, Mary Elvira (1932). "The discovery of the elements. XIII. Some spectroscopic discoveries". Journal of Chemical Education . 9 (8): 1413–1434. Bibcode:1932JChEd...9.1413W. doi:10.1021/ed009p1413.