Siderophyllite

Last updated
Siderophyllite
Zinnwaldite2.jpg
Zinnwaldite (siderophyllite – polylithionite solid solution mineral series)
General
Category Silicate mineral
Formula
(repeating unit)
KFe2+2Al(Al2Si2)O10(F,OH)2
IMA symbol Sid [1]
Strunz classification 9.EC.21
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 5.36  Å, b = 9.29 Å
c = 10.26 Å; β = 100.1°; Z = 2
Identification
ColorBlue green, dark brown, black.
Crystal habit Micaceous foliated; pseudohexagonal crystals
Cleavage Perfect basal
Fracture Conchoidal
Mohs scale hardness2.5
Luster Vitreous to dull
Streak Greenish gray
Diaphaneity Transparent to subopaque
Specific gravity 3
Optical propertiesBiaxial (-)
Refractive index nα = 1.582 nβ = 1.625 nγ = 1.625
Birefringence δ = 0.043
2V angle 4° (measured)
References [2] [3] [4]

Siderophyllite is a rare member of the mica group of silicate minerals with formula KFe2+2Al(Al2Si2)O10(F,OH)2.

The mineral occurs in nepheline syenite pegmatites and granite and aplite greisens. It is associated with microcline and astrophyllite at Pikes Peak, Colorado. It is also found in the alkali pegmatites of Mont Saint-Hilaire, Quebec. [4]

It was first described in 1880 for an occurrence near Pikes Peak, Colorado. The name derives from the Greek sideros, iron, and phyllon, leaf, in reference to its iron rich composition and perfect basal cleavage. [3]

Related Research Articles

<span class="mw-page-title-main">Lepidolite</span> Light micas with substantial lithium

Lepidolite is a lilac-gray or rose-colored member of the mica group of minerals with chemical formula K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2. It is the most abundant lithium-bearing mineral and is a secondary source of this metal. It is the major source of the alkali metal rubidium.

<span class="mw-page-title-main">Zinnwaldite</span>

Zinnwaldite, KLiFeAl(AlSi3)O10(OH,F)2, potassium lithium iron aluminium silicate hydroxide fluoride is a silicate mineral in the mica group. The IMA status is as a series between siderophyllite (KFe2Al(Al2Si2)O10(F,OH)2) and polylithionite (KLi2AlSi4O10(F,OH)2) and not considered a valid mineral species.

<span class="mw-page-title-main">Phenakite</span>

Phenakite or phenacite is a fairly rare nesosilicate mineral consisting of beryllium orthosilicate, Be2SiO4. Occasionally used as a gemstone, phenakite occurs as isolated crystals, which are rhombohedral with parallel-faced hemihedrism, and are either lenticular or prismatic in habit: the lenticular habit is determined by the development of faces of several obtuse rhombohedra and the absence of prism faces. There is no cleavage, and the fracture is conchoidal. The Mohs hardness is high, being 7.5 – 8; the specific gravity is 2.96. The crystals are sometimes perfectly colorless and transparent, but more often they are greyish or yellowish and only translucent; occasionally they are pale rose-red. In general appearance the mineral is not unlike quartz, for which indeed it has been mistaken. Its name comes from Ancient Greek: φέναξ, romanized: phénax, meaning "deceiver" due to its close visual similarity to quartz, named by Nils Gustaf Nordenskiöld in 1833.

<span class="mw-page-title-main">Tantalite</span> Tantalum ore

The mineral group tantalite [(Fe, Mn)Ta2O6] is the primary source of the chemical element tantalum, a corrosion (heat and acid) resistant metal. It is chemically similar to columbite, and the two are often grouped together as a semi-singular mineral called coltan or "columbite-tantalite" in many mineral guides. However, tantalite has a much greater specific gravity than columbite (8.0+ compared to columbite's 5.2). Iron-rich tantalite is the mineral tantalite-(Fe) or ferrotantalite and manganese-rich is tantalite-(Mn) or manganotantalite.

<span class="mw-page-title-main">Spessartine</span> Nesosilicate, manganese aluminium garnet species

Spessartine is a nesosilicate, manganese aluminium garnet species, Mn2+3Al2(SiO4)3. This mineral is sometimes mistakenly referred to as spessartite.

<span class="mw-page-title-main">Aegirine</span> Member of the clinopyroxene group of inosilicate mineral

Aegirine is a member of the clinopyroxene group of inosilicate minerals. Aegirine is the sodium endmember of the aegirine-augite series. Aegirine has the chemical formula NaFeSi2O6 in which the iron is present as Fe3+. In the aegirine-augite series the sodium is variably replaced by calcium with iron(II) and magnesium replacing the iron(III) to balance the charge. Aluminium also substitutes for the iron(III). Acmite is a fibrous, green-colored variety.

<span class="mw-page-title-main">Triplite</span>

Triplite is a rare phosphate mineral with formula: (Mn, Fe)2PO4(F, OH). It occurs in phosphate-rich granitic pegmatites typically as irregular brown opaque masses. Triplite was first described in 1813 for an occurrence in Chanteloube, Limousin, France. The name is from the Greek triplos for triple, in reference to the three cleavage directions. In color and appearance, it is very similar to rhodocrosite, another manganese bearing mineral. Chemically, it is also quite similar to triploidite the difference being that triplite is fluorine dominant while triploidite is hydroxide dominant.

<span class="mw-page-title-main">Lazulite</span>

Lazulite ((Mg,Fe2+)Al2(PO4)2(OH)2) is a blue, phosphate mineral containing magnesium, iron, and aluminium phosphate. Lazulite forms one endmember of a solid solution series with the darker iron rich scorzalite.

<span class="mw-page-title-main">Lithiophilite</span>

Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend," as lithiophilite is usually found with lithium.

<span class="mw-page-title-main">Aenigmatite</span> Sapphirine supergroup, single chain inosilicate mineral

Aenigmatite, also known as Cossyrite after Cossyra, the ancient name of Pantelleria, is a sodium, iron, titanium inosilicate mineral. The chemical formula is Na2Fe2+5TiSi6O20 and its structure consists of single tetrahedral chains with a repeat unit of four and complex side branches. It forms brown to black triclinic lamellar crystals. It has Mohs hardness of 5.5 to 6 and specific gravity of 3.74 to 3.85. Aenigmatite forms a solid-solution series with wilkinsonite, Na2Fe2+4Fe3+2Si6O20.

<span class="mw-page-title-main">Triploidite</span>

Triploidite is an uncommon manganese iron phosphate mineral with formula: (Mn, Fe)2PO4OH. It crystallizes in the monoclinic crystal system and typically occurs as elongated and striated slender prisms which may be columnar to fibrous. Its crystals may be pinkish to yellowish brown or red-orange.

Segelerite is a complex phosphate mineral with formula CaMgFe3+OH(PO4)2·H2O. It occurs in pegmatites and forms striking green or chartreuse crystals. It was discovered in 1974 in the Black Hills of South Dakota by an amateur mineralogist from New York, Curt G. Segeler (1901–1989), after whom it is named.

<span class="mw-page-title-main">Scorzalite</span>

Scorzalite ((Fe2+,Mg)Al2(OH,PO4)2) is a dark blue phosphate mineral containing iron, magnesium, and aluminium phosphate. Scorzalite forms one endmember of a solid solution series with the lighter, more magnesium-rich lazulite.

<span class="mw-page-title-main">Eosphorite</span> Phosphate mineral

Eosphorite is a brown (occasionally pink) manganese hydrous phosphate mineral with chemical formula: MnAl(PO4)(OH)2·H2O. It is used as a gemstone.

<span class="mw-page-title-main">Beraunite</span>

Beraunite is an iron phosphate mineral. It was first described by August Breithaupt for an occurrence in Beraun currently in the Czech Republic. Beraunite occurs as a secondary mineral in iron ore deposits, and as an alteration product of primary phosphate minerals in granite pegmatites.

<span class="mw-page-title-main">Gormanite</span>


Gormanite is a phosphate mineral with the formula (Fe,Mg)3Al4(PO4)4(OH)6·2H2O. It was named after the University of Toronto professor Donald Herbert Gorman (1922-2020).

<span class="mw-page-title-main">Annite</span> Phyllosilicate mineral in the mica family

Annite is a phyllosilicate mineral in the mica family. It has a chemical formula of KFe32+AlSi3O10(OH)2. Annite is the iron end member of the biotite mica group, the iron rich analogue of magnesium rich phlogopite. Annite is monoclinic and contains tabular crystals and cleavage fragments with pseudohexagonal outlines. There are contact twins with composition surface {001} and twin axis {310}.

Szklaryite is an extremely rare mineral with the formula []Al6BAs33+O15. It is essentially vacant ("[]"), arsenic-dominant member of dumortierite supergroup, giving a name of szklaryite group. It is one of three quite recently found minerals of this group, the other two being nioboholtite and titanoholtite, all coming from the Szklary village near Ząbkowice Śląskie in Poland. They occur in a unique pegmatite of probable anatectic origin.

Nioboholtite is an extremely rare mineral with the formula (Nb0.6[]0.4)Al6BSi3O18. It is the niobium-rich member of the dumortierite supergroup, and the niobium analogue of holtite of the holtite group. It is one of three quite recently found minerals of this group, the other two being titanoholtite and szklaryite, all coming from the Szklary village near Ząbkowice Śląskie in Poland. They occur in a unique pegmatite. Nioboholtite and schiavinatoite are both minerals with essential niobium and boron.

Titanoholtite is an extremely rare mineral with the formula (Ti0.75[]0.25)Al6BSi3O18. It is titanium-rich member of dumortierite supergroup, and titanium-analogue of holtite of the holtite group. It is one of three quite recently found minerals of this group, the other two being nioboholtite and szklaryite, all coming from the Szklary village near Ząbkowice Śląskie in Poland. They occur in a unique pegmatite of probable anatectic origin.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Siderophyllite data on Webmineral
  3. 1 2 Siderophyllite on Mindat.org
  4. 1 2 Siderophyllite in the Handbook of Mineralogy