Dickite

Last updated
Dickite
Dickite-d06-179a.jpg
General
Category Phyllosilicates
Kaolinite-serpentine group
Formula
(repeating unit)
Al2Si2O5(OH)4
IMA symbol Dck [1]
Strunz classification 9.ED.05
Dana classification 71.01.01.01
Crystal system Monoclinic
Crystal class Domatic (m)
(same H-M symbol)
Space group Cc
Unit cell a = 5.150, b = 8.940
c = 14.424 [Å]; β = 96.8°; Z = 4
Identification
ColorWhite, with coloration from impurities
Crystal habit Pseudohexagonal crystals, aggregates of platelets and compact massive
Cleavage Perfect on {001}
Tenacity Flexible but inelastic
Mohs scale hardness1.5–2
Luster Satiny to pearly
Streak White
Diaphaneity Transparent
Specific gravity 2.6
Optical propertiesBiaxial (+)
Refractive index nα = 1.561 – 1.564 nβ = 1.561 – 1.566 nγ = 1.566 – 1.570
Birefringence δ = 0.005 – 0.006
2V angle Measured: 50° to 80°
References [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

Dickite (Al2Si2O5(OH)4) is a phyllosilicate clay mineral named after the metallurgical chemist Allan Brugh Dick, who first described it. It is chemically composed of 20.90% aluminium, 21.76% silicon, 1.56% hydrogen and 55.78% oxygen. It has the same composition as kaolinite, nacrite, and halloysite, but with a different crystal structure (polymorph). Dickite sometimes contains impurities such as titanium, iron, magnesium, calcium, sodium and potassium. [3]

Contents

Dickite occurs with other clays and requires x-ray diffraction for its positive identification. Dickite is an important alteration indicator[ clarification needed ] in hydrothermal systems as well as occurring in soils and shales.

Dickite's type location is in Pant-y-Gaseg, Amlwch, Isle of Anglesey, Wales, United Kingdom, where it was first described in 1888. [3] Dickite appears in locations with similar qualities and is found in China, Jamaica, France, Germany, United Kingdom, United States, Italy, Belgium and Canada. [12]

History

In 1888, Allan Brugh Dick (1833–1926), a Scottish metallurgical chemist, was on the island of Anglesey to conduct research on kaolin. He performed various experiments describing the clay mineral. [8] It was not until 1931 that Clarence S. Ross and Paul F. Kerr looked closer at the mineral and concluded that it was different from the known minerals of kaolinite and nacrite. They named it after the first person to describe the mineral.

Composition

Al2Si2O5(OH)4 is the chemical formula of dickite. The calculated percent abundances are very close when compared to other kaolin minerals.

Chemical composition of dickite: [7]

Dickite and other kaolin minerals are commonly developed by weathering of feldspars and muscovite. [7] Through its evolution, dickite, a phyllosilicate mineral, maintains the aluminium and silicon elements influencing the formation of hexagonal sheets common to clay minerals.

The problem of mistaken identity arises when comparing dickite to other kaolin minerals due to the fact that kaolinite, dickite, and nacrite all have the same formula but different molecular structures. The only way to determine the true identity of the mineral is through powder x-ray diffraction and optical means.

Geologic occurrence

Dickite was first discovered in Almwch, Island of Anglesey, Wales, UK. Dickite is scattered across Wales forming occurrences in vein assemblages and as a rock-forming mineral. This area and others where dickite can be found all share similar characteristics. Pockets in phylloid algal limestones, in interstices of biocalcarenites and sandstone are a suitable environment for dickite. Very low pressure and high temperatures are the ideal environment for the formation of dickite. The more perfected crystallization of dickite occurs in porous algal limestones in the form of a white powder. The more disordered dickites can be found in less porous rocks.

Another occurrence spot, as indicated by Brindley and Porter of the American Mineralogists journal, is the Northerly dickite-bearing zone in Jamaica. The dickite in this zone ranges from indurate breccias containing cream to pinkish and purplish fragments composed largely of dickite with subordinate anatase set in a matrix of greenish dickite, to discrete veins and surface coatings of white, cream and translucent dickite. It appears that dickite in the northerly zone were formed by hot ascending waters from an uncertain origin.

Dickite is found worldwide in locations such as Ouray, Colorado, US; San Juanito, Chihuahua, Mexico, in a silicified zone among the rhyolite area; and in St. George, Utah, US, where the mineral is thought to be associated with volcanic rock. [11] An extensive study was done on dickite pertaining to its location in Pennsylvanian limestones of southeastern Kansas, US.

In the dickite deposits of southeast Kansas the distribution is dependent on the following: the stratigraphic alternation of limestones and shales, westward regional dip, thick deposits of highly porous algal limestones, and igneous intrusions. It was found that groundwaters substantially heated along with magmatic waters which made its way up-dip and through the intrusions in the conduit-like algal mounds which allowed the dickite to be deposited in this area and it might be conclusive to say that this trend follows elsewhere in other locations around the world. [9]

Physical properties

Dickite takes on the appearance of a white, brown earthy color and is often found embedded in many other minerals such as quartz.

Dickite has perfect cleavage in the (001) direction. Its color varies from blue, gray, white to colorless. It usually has a dull clay-like texture. Its hardness on the Mohs scale is 1.5–2, basically between talc and gypsum. This is attributed to its loose chemical bonds. It is held with hydrogen bonds, which are otherwise weak. It leaves a white streak and it has a pearly luster. It has a density of 2.6. Dickite is biaxial, its birefringence is between 0.0050–0.0090, its surface relief is low and it has no dispersion. The plane of the optical axis is normal to the plane of symmetry and inclined 160, rear to the normal to (0,0,1).

The atomic structure of dickite, being very similar to that of kaolinite and other kaolin type minerals, has a very specific arrangement that differs slightly enough to set its physical appearance and other physical properties apart from that of its family members kaolinite and nacrite. In a comparison of the family of minerals through experiments examined by Ross and Kerr the similarities between them are clearly evident and can, depending on the samples, be indistinguishable by optical means. [5]

The hexagonal structure and the stacking of the atoms influence the physical properties in many ways including the color, hardness, cleavage, density, and luster. Another important factor in influencing physical properties of minerals is the presence of bonding between atoms. Within dickite there exists dominant O-H bonding, a type of strong ionic bonding. [10]

Structure

Dickite has a monoclinic crystal system and its crystal class is domatic (m). This crystal system contains two non-equal axes (a and b) that are perpendicular to each other and a third axis (c) that is inclined with respect to the a axis. The a and c axes lie in a plane. Dickite involves an interlayer bonding with at least 3 identifiable bonds: an ionic type interaction due to net unbalanced charges on the layers, Van der Waals forces between layers and hydrogen bonds between oxygen atoms on the surface of one layer and hydroxyl groups on the opposing surface. A hydrogen bond, as the term is used here, involves a long range interaction between hydrogen of a hydroxyl group coordinated to a cation and an oxygen atom coordinated to another cation. The reaction is predominantly electrostatic; hence an ionic bonding model is appropriate. Its axial ratio is a=0.576, b=1, c=1.6135.

The hexagonal network of Si-O tetrahedra along with the superimposed layer of Al-O, OH octahedra make up the kaolin layer found in dickite. Dickite is composed of regular sequences of one, two and six kaolin layers. Analysis of the dickite structure reveals the space group to be C4s-Cc. The a and c axis both lie on the glide plane of symmetry. [10] Dickite's structure is made up of a shared layer of corner-sharing tetrahedra filled by a plane of oxygens and hydroxyls along with a sheet of edge-sharing octahedra with every third site left empty. [7]

An experiment was conducted using a pseudo-hexagonal crystal of dickite to determine the unit cell information and the layers that exist within dickite. It was found that there are six layers within the kaolin layer within dickite. This is evidenced in the following findings. There is an oxygen atom from the all oxygen layer that lies at the center. The atoms of the O layer, the Si layer and the O, (OH) layer are situated for the ideal kaolin layer. [10]

X-ray experiments were performed by C. J. Ksanda and Tom F. W. Barth and it was concluded that dickite is composed of tiny layers of cations and anions which are parallel to the a-b plane stacked on top of one another which they found to be exactly as Gruner had described. It was also concluded that the two dimensional arrangement of some of the atoms are not as Gruner described. [6]

Related Research Articles

<span class="mw-page-title-main">Biotite</span> Group of phyllosilicate minerals within the mica group

Biotite is a common group of phyllosilicate minerals within the mica group, with the approximate chemical formula K(Mg,Fe)3AlSi3O10(F,OH)2. It is primarily a solid-solution series between the iron-endmember annite, and the magnesium-endmember phlogopite; more aluminous end-members include siderophyllite and eastonite. Biotite was regarded as a mineral species by the International Mineralogical Association until 1998, when its status was changed to a mineral group. The term biotite is still used to describe unanalysed dark micas in the field. Biotite was named by J.F.L. Hausmann in 1847 in honor of the French physicist Jean-Baptiste Biot, who performed early research into the many optical properties of mica.

<span class="mw-page-title-main">Kaolinite</span> Phyllosilicate clay mineral

Kaolinite ( KAY-ə-lə-nyte, -⁠lih-; also called kaolin) is a clay mineral, with the chemical composition Al2Si2O5(OH)4. It is a layered silicate mineral, with one tetrahedral sheet of silica (SiO4) linked through oxygen atoms to one octahedral sheet of alumina (AlO6).

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Clay</span> Fine grained soil

Clay is a type of fine-grained natural soil material containing clay minerals (hydrous aluminium phyllosilicates, e.g. kaolinite, Al2Si2O5(OH)4). Most pure clay minerals are white or light-coloured, but natural clays show a variety of colours from impurities, such as a reddish or brownish colour from small amounts of iron oxide.

<span class="mw-page-title-main">Crystal structure</span> Ordered arrangement of atoms, ions, or molecules in a crystalline material

In crystallography, crystal structure is a description of the ordered arrangement of atoms, ions, or molecules in a crystalline material. Ordered structures occur from the intrinsic nature of the constituent particles to form symmetric patterns that repeat along the principal directions of three-dimensional space in matter.

<span class="mw-page-title-main">Strontianite</span> Rare carbonate mineral and raw material for the extraction of strontium

Strontianite (SrCO3) is an important raw material for the extraction of strontium. It is a rare carbonate mineral and one of only a few strontium minerals. It is a member of the aragonite group.

<span class="mw-page-title-main">Allotropes of carbon</span> Materials made only out of carbon

Carbon is capable of forming many allotropes due to its valency. Well-known forms of carbon include diamond and graphite. In recent decades, many more allotropes have been discovered and researched, including ball shapes such as buckminsterfullerene and sheets such as graphene. Larger-scale structures of carbon include nanotubes, nanobuds and nanoribbons. Other unusual forms of carbon exist at very high temperatures or extreme pressures. Around 500 hypothetical 3‑periodic allotropes of carbon are known at the present time, according to the Samara Carbon Allotrope Database (SACADA).

<span class="mw-page-title-main">Clay mineral</span> Fine-grained aluminium phyllosilicates

Clay minerals are hydrous aluminium phyllosilicates (e.g. kaolin, Al2Si2O5(OH)4), sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations found on or near some planetary surfaces.

<span class="mw-page-title-main">Cleavage (crystal)</span> Tendency of crystalline materials

Cleavage, in mineralogy and materials science, is the tendency of crystalline materials to split along definite crystallographic structural planes. These planes of relative weakness are a result of the regular locations of atoms and ions in the crystal, which create smooth repeating surfaces that are visible both in the microscope and to the naked eye. If bonds in certain directions are weaker than others, the crystal will tend to split along the weakly bonded planes. These flat breaks are termed "cleavage". The classic example of cleavage is mica, which cleaves in a single direction along the basal pinacoid, making the layers seem like pages in a book. In fact, mineralogists often refer to "books of mica".

<span class="mw-page-title-main">Halloysite</span> Aluminosilicate clay mineral

Halloysite is an aluminosilicate clay mineral with the empirical formula Al2Si2O5(OH)4. Its main constituents are oxygen (55.78%), silicon (21.76%), aluminium (20.90%), and hydrogen (1.56%). It is a member of the kaolinite group. Halloysite typically forms by hydrothermal alteration of alumino-silicate minerals. It can occur intermixed with dickite, kaolinite, montmorillonite and other clay minerals. X-ray diffraction studies are required for positive identification. It was first described in 1826, and subsequently named after, the Belgian geologist Omalius d'Halloy.

<span class="mw-page-title-main">Afwillite</span> Nesosilicate alteration mineral also sometimes found in hydrated cement paste

Afwillite is a calcium hydroxide nesosilicate mineral with formula Ca3(SiO3OH)2·2H2O. It occurs as glassy, colorless to white prismatic monoclinic crystals. Its Mohs scale hardness is between 3 and 4. It occurs as an alteration mineral in contact metamorphism of limestone. It occurs in association with apophyllite, natrolite, thaumasite, merwinite, spurrite, gehlenite, ettringite, portlandite, hillebrandite, foshagite, brucite and calcite.

The Kaolin deposits of the Charentes Basin in France are clay deposits formed sedimentarily and then confined by other geological structures.

<span class="mw-page-title-main">Iddingsite</span>

Iddingsite is a microcrystalline rock that is derived from alteration of olivine. It is usually studied as a mineral, and consists of a mixture of remnant olivine, clay minerals, iron oxides, and ferrihydrites. Debates over iddingsite's non-definite crystal structure caused it to be de-listed as an official mineral by the IMA; thus, it is properly referred to as a rock.

<span class="mw-page-title-main">Bararite</span> Halide mineral

Bararite is a natural form of ammonium fluorosilicate (also known as hexafluorosilicate or fluosilicate). It has chemical formula (NH4)2SiF6 and trigonal crystal structure. This mineral was once classified as part of cryptohalite. Bararite is named after the place where it was first described, Barari, India. It is found at the fumaroles of volcanoes (Vesuvius, Italy), over burning coal seams (Barari, India), and in burning piles of anthracite (Pennsylvania, U.S.). It is a sublimation product that forms with cryptohalite, sal ammoniac, and native sulfur.

Zirconium phosphates (zirconium hydrogen phosphate) are acidic, inorganic cation exchange materials that have a layered structure with formula Zr(HPO4)2∙nH2O. These salts have high thermal and chemical stability, solid state ion conductivity, resistance to ionizing radiation, and the capacity to incorporate different types of molecules with different sizes between their layers. There are various phases of zirconium phosphate which vary in their interlaminar spaces and their crystalline structure. Among all the Zirconium phosphate phases the most widely used are the alpha (Zr(HPO4)2∙H2O) and the gamma (Zr(PO4)(H2PO4)∙2H2O) phase. The salts have been widely used in several applications such as: drug delivery, catalysis, nanocomposite, nuclear waste management, clinical dialyzer, among others.

<span class="mw-page-title-main">Hidalgoite</span> Mineral of the beudantite group

Hidalgoite, PbAl3(AsO4)(SO4)(OH)4, is a rare member of the beudantite group and is usually classified as part of the alunite family. It was named after the place where it was first discovered, the Zimapán mining district, Hidalgo, Mexico. At Hidalgo where it was initially discovered, it was found as dense white masses in alternating dikes of quartz latite and quartz monzonite alongside other secondary minerals such as sphalerite, arsenopyrite, cerussite and trace amounts of angelsite and alamosite, it was then rediscovered at other locations such as Australia where it occurs on oxidized shear zones above greywacke shales especially on the anticline prospects of the area, and on fine grained quartz-spessartine rocks in Broken Hill, Australia. Hidalgoite specimens are usually associated with copper minerals, clay minerals, iron oxides and polymetallic sulfides in occurrence.

<span class="mw-page-title-main">Guyanaite</span> Chromium oxide mineral

Guyanaite (CrOOH) is a chromium oxide mineral that forms as an intergrowth with other chromium oxide minerals known as bracewellite (CrOOH) and grimaldiite (CrOOH) as well as eskolaite (Cr2O3) which in early findings were nearly indistinguishable from one another. These oxides formed so closely as intergrowths with one another that they were initially, and erroneously, identified as a single definite mineral previously known as merumite. Because of its complex history and the previously undiscovered nature of these chromium oxide polymorphs, the relevance of any information found in many early experiments involving the mineral formerly known as merumite in regard to guyanaite is unknown and it is implied that in any further reference of merumite it will have been composed of a mineral assemblage including guyanaite. The rare occurrence and complexity from intergrowth of naturally occurring guyanaite hinders experimental work, leading to laboratory synthesized samples which help to better experiment with the minerals.

Mineral alteration refers to the various natural processes that alter a mineral's chemical composition or crystallography.

George-ericksenite is a mineral with the chemical formula Na6CaMg(IO3)6(CrO4)2(H2O)12. It is vitreous, pale yellow to bright lemon yellow, brittle, and features a prismatic to acicular crystal habit along [001] and somewhat flattened crystal habit on {110}. It was first encountered in 1984 at the Pinch Mineralogical Museum. One specimen of dietzeite from Oficina Chacabuco, Chile had bright lemon-yellow micronodules on it. These crystals produced an X-ray powder diffraction pattern that did not match any XRD data listed for inorganic compounds. The X-ray diffraction pattern and powder mount were set aside until 1994. By then, the entire mineral collection from the Pinch Mineralogical Museum had been purchased by the Canadian Museum of Nature. The specimen was then retrieved and studied further. This study was successful and the new mineral george-ericksenite was discovered. The mineral was named for George E. Ericksen who was a research economic geologist with the U.S. Geological Survey for fifty years. The mineral and name have been approved by Commission on New Minerals and Mineral Names (IMA). The specimen, polished thin section, and the actual crystal used for the structure determination are kept in the Display Series of the National Mineral Collection of Canada at the Canadian Museum of Nature, Ottawa, Ontario.

The soil matrix is the solid phase of soils, and comprise the solid particles that make up soils. Soil particles can be classified by their chemical composition (mineralogy) as well as their size. The particle size distribution of a soil, its texture, determines many of the properties of that soil, in particular hydraulic conductivity and water potential, but the mineralogy of those particles can strongly modify those properties. The mineralogy of the finest soil particles, clay, is especially important.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. Anthony JW, Bideaux RA, Bladh KW, et al. (1995). "Dickite" (PDF). Handbook of mineralogy. Tucson, Ariz.: Mineral Data Publishing. ISBN   9780962209734. OCLC   20759166.
  3. 1 2 3 "Dickite: Mineral information, data and localities". MinDat.org. Retrieved 27 Mar 2019.
  4. "Dickite Mineral Data". webmineral.com. Retrieved 27 Mar 2019.
  5. 1 2 Dick AB (1888). "On Kaolinite" (PDF). Mineral. Mag. 8: 15–27. Archived from the original (PDF) on 5 October 2016. Retrieved 28 March 2019.
  6. 1 2 Ksanda CJ, Barth TF (1935). "Note on the Structure of Dickite and Other Clay Minerals". Am. Mineral. 20 (9): 631–637.
  7. 1 2 3 4 Cruz MD. "Genesis and Evolution of the Kaolin-group Minerals During the Diagenesis and the Beginning of Metamorphism" (PDF). University of the Basque Country Seminar (seminar material): 41–52.
  8. 1 2 Ross C, Kerr PF (1931). "Dickite, a Kaolin Mineral" (PDF). Am. Mineral. 15 (1): 34–39.
  9. 1 2 Schroeder RJ, Hayes JB (1968). "Dickite and Kaolinite in Pennsylvanian Limestones of Southeastern Kansas". Clays and Clay Minerals. 16 (1): 41–49. Bibcode:1968CCM....16...41S. doi:10.1346/CCMN.1968.0160106.
  10. 1 2 3 4 Newnham RE, Brindley GW (1956). "The Crystal Structure of Dickite". Acta Crystallogr. 9 (9): 759–764. doi: 10.1107/S0365110X56002060 .
  11. 1 2 Holmes RJ (1951). "Reference Clay Localities". In Ker PF, Main MS, Hamilton PK (eds.). Occurrence and microscopic examination of reference clay Mineral specimens: Preliminary reports. American Petroleum Institute Research Project. Vol. 4. New York: Columbia University. OCLC   223495759.
  12. 1 2 Brindley GW, Porter AR (1978). "Occurrence of dickite in Jamaica-ordered and disordered varieties". Am. Mineral. 63 (5–6): 554–562. S2CID   41328124.