Saliotite

Last updated
Saliotite
General
Category Silicate mineral
Formula
(repeating unit)
(Li,Na)Al3(AlSi3O10)(OH)5
IMA symbol Sal [1]
Strunz classification 9.EC.60
Crystal system Monoclinic
Crystal class Prismatic (2/m)
(same H-M symbol)
Space group C2/m
Unit cell a = 5.15  Å, b = 8.91 Å
c = 23.83 Å; β = 94.23°; Z = 4
Identification
ColorColorless to white
Cleavage Perfect on {001}
Mohs scale hardness2 - 3
Luster Pearly
Streak White
Diaphaneity Transparent
Specific gravity 2.75
Optical propertiesBiaxial (-)
Refractive index nα = 1.580 - 1.590 nβ = 1.580 - 1.590 nγ = 1.590 - 1.600
Birefringence δ = 0.010
2V angle 30° to 50°
References [2] [3]

Saliotite is a rare colorless to pearl white phyllosilicate mineral in the smectite group with formula (Li,Na)Al3(AlSi3O10)(OH)5. [2] It is an ordered 1:1 interstratification of cookeite and paragonite. It has perfect cleavage, a pearly luster and leaves a white streak. Its crystal structure is monoclinic, and it is a soft mineral with a hardness rated 2-3 on the Mohs scale. [2] [3]

Saliotite was first described in 1994 for an occurrence in an outcrop of high grade schist north of Almeria, Andalusia, Spain. It was named for French geologist Pierre Saliot. [2]

Related Research Articles

<span class="mw-page-title-main">Amblygonite</span>

Amblygonite is a fluorophosphate mineral, (Li,Na)AlPO4(F,OH), composed of lithium, sodium, aluminium, phosphate, fluoride and hydroxide. The mineral occurs in pegmatite deposits and is easily mistaken for albite and other feldspars. Its density, cleavage and flame test for lithium are diagnostic. Amblygonite forms a series with montebrasite, the low fluorine endmember. Geologic occurrence is in granite pegmatites, high-temperature tin veins, and greisens. Amblygonite occurs with spodumene, apatite, lepidolite, tourmaline, and other lithium-bearing minerals in pegmatite veins. It contains about 10% lithium, and has been utilized as a source of lithium. The chief commercial sources have historically been the deposits of California and France.

<span class="mw-page-title-main">Orthoclase</span> Tectosilicate mineral found in igneous rock

Orthoclase, or orthoclase feldspar (endmember formula KAlSi3O8), is an important tectosilicate mineral which forms igneous rock. The name is from the Ancient Greek for "straight fracture", because its two cleavage planes are at right angles to each other. It is a type of potassium feldspar, also known as K-feldspar. The gem known as moonstone (see below) is largely composed of orthoclase.

<span class="mw-page-title-main">Pyrophyllite</span> Aluminium silicate hydroxide phyllosilicate mineral

Pyrophyllite is a phyllosilicate mineral composed of aluminium silicate hydroxide: Al2Si4O10(OH)2. It occurs in two forms (habits): crystalline folia and compact masses; distinct crystals are not known.

Sussexite is a manganese borate mineral MnBO2(OH). Crystals are monoclinic prismatic and typically fibrous in occurrence. Colour is white, pink, yellowish white with a pearly lustre. It has a Mohs hardness of 3 and a specific gravity of 3.12.

<span class="mw-page-title-main">Zinnwaldite</span>

Zinnwaldite, KLiFeAl(AlSi3)O10(OH,F)2, potassium lithium iron aluminium silicate hydroxide fluoride is a silicate mineral in the mica group. The IMA status is as a series between siderophyllite (KFe2Al(Al2Si2)O10(F,OH)2) and polylithionite (KLi2AlSi4O10(F,OH)2) and not considered a valid mineral species.

<span class="mw-page-title-main">Boehmite</span>

Boehmite or böhmite is an aluminium oxide hydroxide mineral, a component of the aluminium ore bauxite. It is dimorphous with diaspore. It crystallizes in the orthorhombic dipyramidal system and is typically massive in habit. It is white with tints of yellow, green, brown or red due to impurities. It has a vitreous to pearly luster, a Mohs hardness of 3 to 3.5 and a specific gravity of 3.00 to 3.07. It is colorless in thin section, optically biaxial positive with refractive indices of nα = 1.644 - 1.648, nβ = 1.654 - 1.657 and nγ = 1.661 - 1.668.

<span class="mw-page-title-main">Euclase</span>

Euclase is a beryllium aluminium hydroxide silicate mineral (BeAlSiO4(OH)). It crystallizes in the monoclinic crystal system and is typically massive to fibrous as well as in slender prismatic crystals. It is related to beryl (Be3Al2Si6O18) and other beryllium minerals. It is a product of the decomposition of beryl in pegmatites.

<span class="mw-page-title-main">Gahnite</span>

Gahnite, ZnAl2O4, is a rare mineral belonging to the spinel group. It forms octahedral crystals which may be green, blue, yellow, brown or grey. It often forms as an alteration product of sphalerite in altered massive sulphide deposits such as at Broken Hill, Australia. Other occurrences include Falun, Sweden where it is found in pegmatites and skarns; and, in the United States, Charlemont, Massachusetts; Spruce Pine, North Carolina; White Picacho district, Arizona; Topsham, Maine; and Franklin, New Jersey.

<span class="mw-page-title-main">Nosean</span>

Nosean, also known as noselite, is a mineral of the feldspathoid group with formula: Na8Al6Si6O24(SO4). H2O. It forms isometric crystals of variable color: white, grey, blue, green, to brown. It has a Mohs hardness of 5.5 to 6 and a specific gravity of 2.3 to 2.4. It is fluorescent. It is found in low-silica igneous rocks. There is a solid solution between nosean and hauyne, which contains calcium.

<span class="mw-page-title-main">Allophane</span> Amorphous to poorly crystalline hydrous aluminium silicate clay mineraloid

Allophane is an amorphous to poorly crystalline hydrous aluminium silicate clay mineraloid. Its chemical formula is Al2O3·(SiO2)1.3-2·(2.5-3)H2O. Since it has short-range atomic order, it is a mineraloid, rather than a mineral, and can be identified by its distinctive infrared spectrum and its X-ray diffraction pattern. It was first described in 1816 in Gräfenthal, Thuringia, Germany. Allophane is a weathering or hydrothermal alteration product of volcanic glass and feldspars and sometimes has a composition similar to kaolinite but generally has a molar ratio of Al:Si = 2. It typically forms under mildly acidic to neutral pH (5–7). Its structure has been debated, but it is similar to clay minerals and is composed of curved alumina octahedral and silica tetrahedral layers. Transmission electron micrographs show that it is generally made up of aggregates of hollow spherules ~3–5 nm in diameter. Allophane can alter to form halloysite under resilicating aqueous conditions and can alter to form gibbsite under desilicating conditions. A copper-containing variety cupro-allophane has been reported.

<span class="mw-page-title-main">Cancrinite</span> Feldspathoid mineral

Cancrinite is a complex carbonate and silicate of sodium, calcium and aluminium with the formula Na6Ca2[(CO3)2|Al6Si6O24]·2H2O. It is classed as a member of the feldspathoid group of minerals; the alkali feldspars that are poor in silica. Yellow, orange, pink, white or even blue, it has a vitreous or pearly luster; a hardness of 5–6 and an uneven conchoidal fracture. It is unusual among the silicate minerals in that it will effervesce with hydrochloric acid due to the associated carbonate ions.

<span class="mw-page-title-main">Mesolite</span> Zeolite mineral

Mesolite is a tectosilicate mineral with formula Na2Ca2(Al2Si3O10)3·8H2O. It is a member of the zeolite group and is closely related to natrolite which it also resembles in appearance.

<span class="mw-page-title-main">Sauconite</span> Trioctahedral (Zn2+) smectite, phyllosilicate mineral

Sauconite is a complex phyllosilicate mineral of the smectite clay group, formula Na0.3Zn3(SiAl)4O10(OH)2·4H2O. It forms soft earthy bluish white to red-brown monoclinic crystals typically massive to micaceous in habit. It has a Mohs hardness of 1 to 2 and a specific gravity of 2.45. Optically it is biaxial positive with refractive index values of nα = 1.550 - 1.580, nβ = 1.590 - 1.620 and nγ = 1.590 - 1.620. It is found in vugs and seams in the oxidized zones of zinc and copper deposits. It occurs in association with hemimorphite, smithsonite, chrysocolla, coronadite and various iron oxides.

<span class="mw-page-title-main">Eucryptite</span>

Eucryptite is a lithium bearing aluminium silicate mineral with formula LiAlSiO4. It crystallizes in the trigonal - rhombohedral crystal system. It typically occurs as granular to massive in form and may pseudomorphically replace spodumene. It has a brittle to conchoidal fracture and indistinct cleavage. It is transparent to translucent and varies from colorless to white to brown. It has a Mohs hardness of 6.5 and a specific gravity of 2.67. Optically it is uniaxial positive with refractive index values of nω = 1.570 - 1.573 and nε = 1.583 - 1.587.

<span class="mw-page-title-main">Margarite</span>

Margarite is a calcium rich member of the mica group of the phyllosilicates with formula: CaAl2(Al2Si2)O10(OH)2. It forms white to pinkish or yellowish gray masses or thin laminae. It crystallizes in the monoclinic crystal system. It typically has a specific gravity of around 3 and a Mohs hardness of 4. It is translucent with perfect 010 cleavage and exhibits crystal twinning.

<span class="mw-page-title-main">Hectorite</span> Rare trioctahedral (Mg2+, Li+) sodium smectite, phyllosilicate mineral

Hectorite is a rare soft, greasy, white clay mineral with a chemical formula of Na0.3(Mg,Li)3Si4O10(OH)2.

<span class="mw-page-title-main">Åkermanite</span> Sorosilicate mineral

Åkermanite (Ca2Mg[Si2O7]) is a melilite mineral of the sorosilicate group, containing calcium, magnesium, silicon, and oxygen. It is a product of contact metamorphism of siliceous limestones and dolomites, and rocks of sanidinite facies. Sanidinite facies represent the highest conditions of temperature of contact metamorphism and are characterized by the absence of hydrous minerals. It has a density of 2.944 g/cm3. Åkermanite ranks a 5 or 6 on the Mohs scale of mineral hardness, and can be found gray, green, brown, or colorless. It has a white streak and a vitreous or resinous luster. It has a tetragonal crystal system and a good, or distinct, cleavage. It is the end member in a solid solution series beginning with gehlenite (Ca2Al[AlSiO7]).

<span class="mw-page-title-main">Vantasselite</span>

Vantasselite is a rare aluminium phosphate mineral with formula: Al4(PO4)3(OH)3 •9H2O. It crystallizes in the orthorhombic system and has a white color, a hardness of 2 to 2.5, a white streak and a pearly luster.

<span class="mw-page-title-main">Lulzacite</span>

Lulzacite is a strontium-containing phosphate mineral with the chemical formula Sr2Fe2+(Fe2+,Mg)2Al4(PO4)4(OH)10.

<span class="mw-page-title-main">Mansfieldite</span>

Mansfieldite is an uncommon mineral that was named after an american geologist, George Rogers Mansfield. It has been considered a valid specie since 1948. It's a member of the variscite group. Mansfieldite creates a series with scorodite, and it is the aluminium analogue of said gem. Mansfieldite is colorless in transmitted light. It is mostly made out of oxygen (47.54%). Other components include arsenic (37.1%), aluminium (13.36%) and hydrogen (2%). Mansfieldite crystals form due to hydrothermal origin in altered and mineralized andesitic pyroclastic rocks. Due to its size, mansfieldite is hard to see even under a microscope. The pink variation of the mineral is due to cobalt impurities, otherwise it is white to light gray. It can be found in the USA, Mexico, France, Algeria, England, Australia, Germany, Algeria and Kazakhstan.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 Saliotite data on Mindat
  3. 1 2 Saliotite data on Webmineral