Lithium tetrachloroaluminate

Last updated

Contents

Lithium tetrachloroaluminate
LiAlCl4-2D.png
LiAlCl4-xtal-1982-Al-coord-CM-3D-ellipsoids.png
Names
IUPAC name
Lithium tetrachloroaluminate
Other names
LAC
Lithium aluminium chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.396 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 237-850-9
PubChem CID
  • InChI=1S/Al.4ClH.Li/h;4*1H;/q+3;;;;;+1/p-4 Yes check.svgY
    Key: AQLRWYUVWAYZFO-UHFFFAOYSA-J Yes check.svgY
  • InChI=1/Al.4ClH.Li/h;4*1H;/q+3;;;;;+1/p-4/rAlCl4.Li/c2-1(3,4)5;/q-1;+1
    Key: AQLRWYUVWAYZFO-VCMAQHAHAL
  • [Li+].Cl[Al-](Cl)(Cl)Cl
Properties
Li[AlCl4]
Molar mass 175.72 g·mol−1
AppearanceWhite hygroscopic crystalline powder [1] [2]
Odor Odorless [1]
Melting point 143 °C (289 °F; 416 K) [2]
Soluble. [1] Reacts violently with water. [3] [2]
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314, H332
P260, P261, P264, P270, P271, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P312, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Lithium tetrachloroaluminate is an inorganic compound with the formula Li [ Al Cl 4]. [4] It consists of lithium cations Li+ and tetrahedral tetrachloroaluminate anions [AlCl4].

Uses

Lithium tetrachloroaluminate is used in some lithium batteries. A solution of lithium tetrachloroaluminate in thionyl chloride is the liquid cathode and electrolyte in those baterries, e.g. the lithium-thionyl chloride cell. Another cathode-electrolyte formulation is lithium tetrachloroaluminate + thionyl chloride + sulfur dioxide + bromine.

Reactions

Reacts violently with water, alcohols and oxidizing agents. Upon exposure to heat or fire, it decomposes emitting irritating and toxic fumes and smoke of hydrogen chloride, lithium oxide and aluminium oxide. [3]

Toxicity

Upon contact with skin, causes burns. Inhalation causes coughing and corrosive injuries to the respiratory system, which can lead to pneumonia. [1] [3] This compound is extremely destructive to the mucous tissues. May cause pulmonary edema and edema of the larynx, laryngitis and edema of bronchi, leading to shortness of breath. May cause damage to the eyes, headache and nausea. If swallowed, may cause damage. [3]

Related Research Articles

<span class="mw-page-title-main">Lithium carbonate</span> Chemical compound

Lithium carbonate is an inorganic compound, the lithium salt of carbonic acid with the formula Li
2
CO
3
. This white salt is widely used in processing metal oxides. It is on the World Health Organization's List of Essential Medicines for its efficacy in the treatment of mood disorders such as bipolar disorder.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient . Examples of substances that are common reducing agents include hydrogen, the alkali metals, formic acid, oxalic acid, and sulfite compounds.

<span class="mw-page-title-main">Lithium-ion battery</span> Rechargeable battery type

A lithium-ion or Li-ion battery is a type of rechargeable battery that uses the reversible intercalation of Li+ ions into electronically conducting solids to store energy. In comparison with other commercial rechargeable batteries, Li-ion batteries are characterized by higher specific energy, higher energy density, higher energy efficiency, a longer cycle life, and a longer calendar life. Also noteworthy is a dramatic improvement in lithium-ion battery properties after their market introduction in 1991: within the next 30 years, their volumetric energy density increased threefold while their cost dropped tenfold.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Lithium metal battery</span> Non-rechargeable battery using lithium metal as anode

Lithium metal batteries are primary batteries that have metallic lithium as an anode. The name intentionally refers to the metal to as to distinguish them from lithium-ion batteries, which use lithiated metal oxides as the cathode material. Although most lithium metal batteries are non-rechargeable, rechargeable lithium metal batteries are also under development. Since 2007, Dangerous Goods Regulations differentiate between lithium metal batteries and lithium-ion batteries.

<span class="mw-page-title-main">ZEBRA battery</span>

The ZEBRA battery is a type of rechargeable molten salt battery based on commonly available and low-cost materials – primarily nickel metal, the sodium and chloride from conventional table salt, as well beta-alumina solid electrolyte. It is technically known as the sodium–nickel–chloride battery, and sometimes as a sodium–metal–halide battery. The common name comes from its development under the Zeolite Battery Research Africa (ZEBRA) project, started in South Africa in 1985.

<span class="mw-page-title-main">Tetrachloroaluminate</span> Ion

Tetrachloroaluminate [AlCl4] is an anion formed from aluminium and chlorine. The anion has a tetrahedral shape, similar to carbon tetrachloride where carbon is replaced with aluminium. Some tetrachloroaluminates are soluble in organic solvents, creating an ionic non-aqueous solution, making them suitable as component of electrolytes for batteries. For example, lithium tetrachloroaluminate is used in some lithium batteries.

<span class="mw-page-title-main">Lithium cobalt oxide</span> Chemical compound

Lithium cobalt oxide, sometimes called lithium cobaltate or lithium cobaltite, is a chemical compound with formula LiCoO
2
. The cobalt atoms are formally in the +3 oxidation state, hence the IUPAC name lithium cobalt(III) oxide.

Organotellurium chemistry describes the synthesis and properties of organotellurium compounds, chemical compounds containing a carbon-tellurium chemical bond. Organotellurium chemistry is a lightly studied area, in part because of it having few applications.

<span class="mw-page-title-main">Lithium–sulfur battery</span> Type of rechargeable battery

The lithium–sulfur battery is a type of rechargeable battery. It is notable for its high specific energy. The low atomic weight of lithium and moderate atomic weight of sulfur means that Li–S batteries are relatively light. They were used on the longest and highest-altitude unmanned solar-powered aeroplane flight by Zephyr 6 in August 2008.

<span class="mw-page-title-main">Solid-state battery</span> Battery with solid electrodes and a solid electrolyte

A solid-state battery is an electrical battery that uses a solid electrolyte for ionic conductions between the electrodes, instead of the liquid or gel polymer electrolytes found in conventional batteries. Solid-state batteries theoretically offer much higher energy density than the typical lithium-ion or lithium polymer batteries.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Titanium disulfide</span> Inorganic chemical compound

Titanium disulfide is an inorganic compound with the formula TiS2. A golden yellow solid with high electrical conductivity, it belongs to a group of compounds called transition metal dichalcogenides, which consist of the stoichiometry ME2. TiS2 has been employed as a cathode material in rechargeable batteries.

Aluminium-ion batteries are a class of rechargeable battery in which aluminium ions serve as charge carriers. Aluminium can exchange three electrons per ion. This means that insertion of one Al3+ is equivalent to three Li+ ions. Thus, since the ionic radii of Al3+ (0.54 Å) and Li+ (0.76 Å) are similar, significantly higher numbers of electrons and Al3+ ions can be accepted by cathodes with little damage. Al has 50 times (23.5 megawatt-hours m-3) the energy density of Li and is even higher than coal.

Research in lithium-ion batteries has produced many proposed refinements of lithium-ion batteries. Areas of research interest have focused on improving energy density, safety, rate capability, cycle durability, flexibility, and cost.

Magnesium batteries are batteries that utilize magnesium cations as charge carriers and possibly in the anode in electrochemical cells. Both non-rechargeable primary cell and rechargeable secondary cell chemistries have been investigated. Magnesium primary cell batteries have been commercialised and have found use as reserve and general use batteries.

<span class="mw-page-title-main">Lithium aluminium germanium phosphate</span> Chemical compound

Lithium aluminium germanium phosphate, typically known with the acronyms LAGP or LAGPO, is an inorganic ceramic solid material whose general formula is Li
1+x
Al
x
Ge
2-x
(PO
4
)
3
. LAGP belongs to the NASICON family of solid conductors and has been applied as a solid electrolyte in all-solid-state lithium-ion batteries. Typical values of ionic conductivity in LAGP at room temperature are in the range of 10–5 - 10–4 S/cm, even if the actual value of conductivity is strongly affected by stoichiometry, microstructure, and synthesis conditions. Compared to lithium aluminium titanium phosphate (LATP), which is another phosphate-based lithium solid conductor, the absence of titanium in LAGP improves its stability towards lithium metal. In addition, phosphate-based solid electrolytes have superior stability against moisture and oxygen compared to sulfide-based electrolytes like Li
10
GeP
2
S
12
(LGPS) and can be handled safely in air, thus simplifying the manufacture process. Since the best performances are encountered when the stoichiometric value of x is 0.5, the acronym LAGP usually indicates the particular composition of Li
1.5
Al
0.5
Ge
1.5
(PO
4
)
3
, which is also the typically used material in battery applications.

<span class="mw-page-title-main">History of the lithium-ion battery</span> Overview of the events of the development of lithium-ion battery

This is a history of the lithium-ion battery.

References

  1. 1 2 3 4 "Lithium tetrachloroaluminate".
  2. 1 2 3 "Lithium Tetrachloroaluminate".
  3. 1 2 3 4 Product sigmaaldrich.com [ dead link ]
  4. Perenthaler, E.; Schulz, Heinz; Rabenau, A. "Crystal structures of lithium tetrachloroaluminate and sodium tetrachloroaluminate as a function of temperature" Zeitschrift für Anorganische und Allgemeine Chemie (1982), 491, 259-65. doi : 10.1002/zaac.19824910133