Lithium tritelluride

Last updated
Lithium tritelluride
Identifiers
3D model (JSmol)
  • [Li].[Te].[Te].[Te]
Properties
LiTe3
Molar mass 389.74 g·mol−1
Related compounds
Related compounds
lithium telluride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lithium tritelluride is an intercalary compound of lithium and tellurium with empirical formula LiTe
3
. It is one of three known members of the Li-Te system, the others being the raw metals and lithium telluride (Li
2
Te
).

LiTe3 was first discovered in 1969 by researchers at the US Atomic Energy Commission. [1] Research into the compound has been primarily driven by the possibility of using molten tellurium salts to cool a nuclear reactor. [2] [3] [4]

Lithium tritelluride can be synthesized by heating a mixture of the appropriate stoichiometry. It is unstable below 304 °C; if left below that temperature, it will decompose, releasing tellurium vapor. [2] [3] [4]

Structurally, lithium tritelluride is composed of parallel graphene-like planes of tellurium. Atoms in these planes are aligned to form "vertical" columns of tellurium; the lithium ions then form columns running through the center of each tellurium hexagon. [5]

Related Research Articles

<span class="mw-page-title-main">Tellurium</span> Chemical element, symbol Te and atomic number 52

Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

<span class="mw-page-title-main">Zinc nitride</span> Chemical compound

Zinc nitride (Zn3N2) is an inorganic compound of zinc and nitrogen, usually obtained as (blue)grey crystals. It is a semiconductor. In pure form, it has the anti-bixbyite structure.

<span class="mw-page-title-main">Lithium aluminate</span> Chemical compound

Lithium aluminate, also called lithium aluminium oxide, is an inorganic chemical compound, an aluminate of lithium. In microelectronics, lithium aluminate is considered as a lattice matching substrate for gallium nitride. In nuclear technology, lithium aluminate is of interest as a solid tritium breeder material, for preparing tritium fuel for nuclear fusion. Lithium aluminate is a layered double hydroxide (LDH) with a crystal structure resembling that of hydrotalcite. Lithium aluminate solubility at high pH is much lower than that of aluminium oxides. In the conditioning of low- and intermediate level radioactive waste (LILW), lithium nitrate is sometimes used as additive to cement to minimise aluminium corrosion at high pH and subsequent hydrogen production. Indeed, upon addition of lithium nitrate to cement, a passive layer of LiH(AlO
2
)
2
· 5 H
2
O
is formed onto the surface of metallic aluminium waste immobilised in mortar. The lithium aluminate layer is insoluble in cement pore water and protects the underlying aluminium oxide covering the metallic aluminium from dissolution at high pH. It is also a pore filler. This hinders the aluminium oxidation by the protons of water and reduces the hydrogen evolution rate by a factor of 10.

<span class="mw-page-title-main">Aluminium hydride</span> Chemical compound

Aluminium hydride is an inorganic compound with the formula AlH3. Alane and its derivatives are part of a family of common reducing reagents in organic synthesis based around group 13 hydrides. In solution—typically in ethereal solvents such tetrahydrofuran or diethyl ether—aluminium hydride forms complexes with Lewis bases, and reacts selectively with particular organic functional groups, and although it is not a reagent of choice, it can react with carbon-carbon multiple bonds. Given its density, and with hydrogen content on the order of 10% by weight, some forms of alane are, as of 2016, active candidates for storing hydrogen and so for power generation in fuel cell applications, including electric vehicles. As of 2006 it was noted that further research was required to identify an efficient, economical way to reverse the process, regenerating alane from spent aluminium product.

Lithium superoxide is an unstable inorganic salt with formula LiO2. A radical compound, it can be produced at low temperature in matrix isolation experiments, or in certain nonpolar, non-protic solvents. Lithium superoxide is also a transient species during the reduction of oxygen in a lithium–air galvanic cell, and serves as a main constraint on possible solvents for such a battery. For this reason, it has been investigated thoroughly using a variety of methods, both theoretical and spectroscopic.

<span class="mw-page-title-main">Sodium nitride</span> Chemical compound

Sodium nitride is the inorganic compound with the chemical formula Na3N. In contrast to lithium nitride and some other nitrides, sodium nitride is an extremely unstable alkali metal nitride. It can be generated by combining atomic beams of sodium and nitrogen deposited onto a low-temperature sapphire substrate. It readily decomposes into its elements:

Organotellurium chemistry describes the synthesis and properties of organotellurium compounds, chemical compounds containing a carbon-tellurium chemical bond. Organotellurium chemistry is a lightly studied area, in part because of it having few applications.

<span class="mw-page-title-main">Lithium titanate</span> Chemical compound

Lithium titanates are chemical compounds of lithium, titanium and oxygen. They are mixed oxides and belong to the titanates. The most important lithium titanates are:

<span class="mw-page-title-main">Antimony telluride</span> Chemical compound

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. As is true of other pnictogen chalcogenide layered materials, it is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

Binary compounds of hydrogen are binary chemical compounds containing just hydrogen and one other chemical element. By convention all binary hydrogen compounds are called hydrides even when the hydrogen atom in it is not an anion. These hydrogen compounds can be grouped into several types.

<span class="mw-page-title-main">Binary compounds of silicon</span> Any binary chemical compound containing just silicon and another chemical element

Binary compounds of silicon are binary chemical compounds containing silicon and one other chemical element. Technically the term silicide is reserved for any compounds containing silicon bonded to a more electropositive element. Binary silicon compounds can be grouped into several classes. Saltlike silicides are formed with the electropositive s-block metals. Covalent silicides and silicon compounds occur with hydrogen and the elements in groups 10 to 17.

<span class="mw-page-title-main">NASICON</span> Class of solid materials

NASICON is an acronym for sodium (Na) super ionic conductor, which usually refers to a family of solids with the chemical formula Na1+xZr2SixP3−xO12, 0 < x < 3. In a broader sense, it is also used for similar compounds where Na, Zr and/or Si are replaced by isovalent elements. NASICON compounds have high ionic conductivities, on the order of 10−3 S/cm, which rival those of liquid electrolytes. They are caused by hopping of Na ions among interstitial sites of the NASICON crystal lattice.

<span class="mw-page-title-main">Molybdenum ditelluride</span> Chemical compound

Molybdenum(IV) telluride, molybdenum ditelluride or just molybdenum telluride is a compound of molybdenum and tellurium with formula MoTe2, corresponding to a mass percentage of 27.32% molybdenum and 72.68% tellurium.

Tellurium compounds are compounds containing the element tellurium (Te). Tellurium belongs to the chalcogen family of elements on the periodic table, which also includes oxygen, sulfur, selenium and polonium: Tellurium and selenium compounds are similar. Tellurium exhibits the oxidation states −2, +2, +4 and +6, with +4 being most common.

The telluride bromides are chemical compounds that contain both telluride ions (Te2−) and bromide ions (Br). They are in the class of mixed anion compounds or chalcogenide halides.

The borotellurates are heteropoly anion compounds which have tellurate groups attached to boron atoms. The ratio of tellurate to borate reflects the degree of condensation. In [TeO4(BO3)2]8- the anions are linked into a chain. In [TeO2(BO3)4]10− the structure is zero dimensional with isolated anions. These arrangements of oxygen around boron and tellurium can have forms resembling silicates. The first borotellurates to be discovered were the mixed sodium rare earth compounds in 2015.

A tellurite fluoride is a mixed anion compound containing tellurite and fluoride ions. They have also been called oxyfluorotellurate(IV) where IV is the oxidation state of tellurium in tellurite.

A tellurite tellurate is chemical compound or salt that contains tellurite and tellurate anions [TeO3]2- [TeO4 ]2-. These are mixed anion compounds, meaning the compounds are cations that contain one or more anions. Some have third anions. Environmentally, tellurite [TeO3]2- is the more abundant anion due to tellurate's [TeO4 ]2- low solubility limiting its concentration in biospheric waters. Another way to refer to the anions is tellurium's oxyanions, which happen to be relatively stable.

Lithium telluride (Li2Te) is an inorganic compound of lithium and tellurium. Along with LiTe3, it is one of the two intermediate solid phases in the lithium-tellurium system. It can be prepared by directly reacting lithium and tellurium in a beryllium oxide crucible at 950°C.

Tellurogallates are chemical compounds which contain anionic units of tellurium connected to gallium. They can be considered as gallates where tellurium substitutes for oxygen. Similar compounds include the thiogallates, selenogallates, telluroaluminates, telluroindates and thiostannates. They are in the category of chalcogenotrielates or more broadly tellurometallates or chalcogenometallates.

References

  1. Foster, M. S.; Johnson, C. E.; Davis, K. A.; Peck, J.; Schablaske, R. (1969). (Technical report). USAEC. p. 141. ANL-7575.{{cite tech report}}: Missing or empty |title= (help), as cited in Valentine, Cavin & Yakel 1977.
  2. 1 2 Hitch, B.F.; Toth, L.M.; Brynestad, J. (January 1978). "The decomposition equilibrium of LiTe3". Journal of Inorganic and Nuclear Chemistry. 40 (1): 31–34. doi:10.1016/0022-1902(78)80301-7.
  3. 1 2 Cunningham, P. T.; Johnson, S. A.; Cairns, E. J. (1973). "Phase Equilibria in Lithium-Chalcogen Systems". Journal of the Electrochemical Society. 120 (3): 328. doi:10.1149/1.2403448.
  4. 1 2 Songster, J.; Pelton, A. D. (June 1992). "The li-te (lithium-tellurium) system". Journal of Phase Equilibria. 13 (3): 300–303. doi:10.1007/BF02667559. S2CID   97799347.
  5. Valentine, D. Y.; Cavin, O. B.; Yakel, H. L. (15 May 1977). "On the crystal structure of LiTe3". Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry. 33 (5): 1389–1396. Bibcode:1977AcCrB..33.1389V. doi: 10.1107/S0567740877006141 . S2CID   98036149.