Triphylite

Last updated
Triphylite-112567.jpg
Triphylite crystal in matrix, collected from Smith Quarry (Chandler Mills Quarry), Newport, New Hampshire 43°21′28″N72°15′8″W / 43.35778°N 72.25222°W / 43.35778; -72.25222 [1]
General
Category Phosphate minerals
Formula
(repeating unit)
LiFePO4
IMA symbol Trp [2]
Strunz classification 8.AB.10
Crystal system Orthorhombic
Crystal class Dipyramidal (mmm)
H-M symbol: (2/m 2/m 2/m)
Space group Pmnb
Unit cell a = 6.0285(6) Å, b = 10.3586(9) Å, c = 4.7031(3) Å, Z = 4
Identification
ColorGreen–blue gray, brown–black
Crystal habit Massive, granular, prismatic
Cleavage {100} perfect, {010} imperfect, {011} poor
Fracture Uneven–subconchoidal
Mohs scale hardness4–5
Luster Vitreous–subresinous
Streak White–grayish white
Diaphaneity Transparent–translucent
Optical propertiesBiaxial (+), 2V = 0°–65°
Refractive index nα=1.675–1.694, nβ=1.684–1.695, nγ=1.685–1.700
Birefringence δ =0.0060–0.0080
References [3] [4] [5]

Triphylite is a lithium iron(II) phosphate mineral with the chemical formula LiFePO4. [6] It is a member of the triphylite group and forms a complete solid solution series with the lithium manganese(II) phosphate, lithiophilite. Triphylite crystallizes in the orthorhombic crystal system. It rarely forms prismatic crystals and is more frequently found in hypidiomorphic rock. It is bluish- to greenish-gray in color, but upon alteration becomes brown to black.

Contents

Etymology and history

The mineral was first discovered and examined in 1834 by German mineralogist Johann Nepomuk von Fuchs at Hennenkobel Mine in the Bavarian Forest. [7] [8] The name derives from the Greek words tri ("three") and phulon ("family"), referring to the three cations found in natural samples of triphylite (Li+, Fe2+, Mn2+). [5]

Crystal structure

Crystal structure of triphylite Crystal structure-Triphylite.png
Crystal structure of triphylite

Triphylite crystallizes in an orthorhombic crystal system. The lithium coordinates to six oxygen atoms in a distorted octahedron. Likewise, the iron centers are octahedrally coordinated. The structure contains isolated phosphate tetrahedra. [9]

Properties

Triphylite is soluble in hydrochloric and sulfuric acid. Under a blowpipe, it melts to form a dark gray, magnetic ball. [7] Over time, the mineral undergoes alteration by oxidation, increasing the oxidation state of iron from +2 to +3 and allowing the lithium to escape, forming heterosite, FePO4. [8]

Triphylite forms a complex solution series with lithiophilite, LiMnPO4, so that natural sources of triphylite usually contain manganese. The structures of members within this series are similar to olivine-type silicates. [10]

Related Research Articles

<span class="mw-page-title-main">Boehmite</span> Mineral

Boehmite or böhmite is an aluminium oxide hydroxide mineral, a component of the aluminium ore bauxite. It is dimorphous with diaspore. It crystallizes in the orthorhombic dipyramidal system and is typically massive in habit. It is white with tints of yellow, green, brown or red due to impurities. It has a vitreous to pearly luster, a Mohs hardness of 3 to 3.5 and a specific gravity of 3.00 to 3.07. It is colorless in thin section, optically biaxial positive with refractive indices of nα = 1.644 – 1.648, nβ = 1.654 – 1.657 and nγ = 1.661 – 1.668.

<span class="mw-page-title-main">Wardite</span>

Wardite is a hydrous sodium aluminium phosphate hydroxide mineral with formula: NaAl3(PO4)2(OH)4·2(H2O). Wardite is of interest for its rare crystallography. It crystallizes in the tetragonal trapezohedral class and is one of only a few minerals in that class. Wardite forms vitreous green to bluish green to white to colorless crystals, masses, and fibrous encrustations. It has a Mohs hardness of 5 and a specific gravity of 2.81–2.87.

<span class="mw-page-title-main">Rhodonite</span> Single chain manganese inosilicate (MnSiO3)

Rhodonite is a manganese inosilicate, with the formula (Mn, Fe, Mg, Ca)SiO3, and member of the pyroxenoid group of minerals, crystallizing in the triclinic system. It commonly occurs as cleavable to compact masses with a rose-red color (its name comes from Ancient Greek ῥόδον (rhódon) 'rose'), often tending to brown due to surface oxidation. The rose-red hue is caused by the manganese cation (Mn2+).

<span class="mw-page-title-main">Hopeite</span> Mineral

Hopeite is a hydrated zinc phosphate with formula: Zn3(PO4)2·4H2O. It is a rare mineral used mainly as a collectors specimen.

<span class="mw-page-title-main">Lithiophilite</span>

Lithiophilite is a mineral containing the element lithium. It is lithium manganese(II) phosphate with chemical formula LiMnPO4. It occurs in pegmatites often associated with triphylite, the iron end member in a solid solution series. The mineral with intermediate composition is known as sicklerite and has the chemical formula Li(Mn,Fe)PO4). The name lithiophilite is derived from the Greek philos (φιλός) "friend", as lithiophilite is usually found with lithium.

<span class="mw-page-title-main">Childrenite</span>

Childrenite is a rare hydrated phosphate mineral with elements iron, manganese, aluminium, phosphorus, oxygen and hydrogen. Its chemical formula is (Fe2+
,Mn)2+
AlPO
4
(OH)
2
•H
2
O
and it has a molecular weight of 229.83 g/mol. Its specific gravity is 3.2 and it has a Mohs hardness of 4.5 to 5. It is usually translucent and non-fluorescent, with imperfect cleavage. It has a vitreous lustre with a white streak, and is brown or yellow in color. It has a conchoidal, uneven fracture, and an orthorhombic crystal system.

<span class="mw-page-title-main">Triploidite</span>

Triploidite is an uncommon manganese iron phosphate mineral with formula: (Mn, Fe)2PO4OH. It crystallizes in the monoclinic crystal system and typically occurs as elongated and striated slender prisms which may be columnar to fibrous. Its crystals may be pinkish to yellowish brown or red-orange.

<span class="mw-page-title-main">Seamanite</span>

Seamanite, named for discoverer Arthur E. Seaman, is a rare manganese boron phosphate mineral with formula Mn3[B(OH)4](PO4)(OH)2. The yellow to pink mineral occurs as small, needle-shaped crystals. It was first discovered in 1917 from a mine in Iron County, Michigan, United States and identified in 1930. As of 2012, seamanite is known from four sites in Michigan and South Australia.

<span class="mw-page-title-main">Scorzalite</span>

Scorzalite ((Fe2+,Mg)Al2(OH,PO4)2) is a dark blue phosphate mineral containing iron, magnesium, and aluminium phosphate. Scorzalite forms one endmember of a solid solution series with the lighter, more magnesium-rich lazulite.

<span class="mw-page-title-main">Eosphorite</span> Phosphate mineral

Eosphorite is a brown (occasionally pink) manganese hydrous phosphate mineral with chemical formula: MnAl(PO4)(OH)2·H2O. It is used as a gemstone.

Xanthoxenite is a rare calcium iron(III) phosphate mineral with formula: Ca4Fe3+2(PO4)4(OH)2·3H2O. It occurs as earthy pale to brownish yellow incrustations and lath shaped crystals. It crystallizes in the triclinic crystal system. It occurs as an alteration product of triphylite in pegmatites. It occurs associated with apatite, whitlockite, childrenite–eosphorite, laueite, strunzite, stewartite, mitridatite, amblygonite and siderite.

<span class="mw-page-title-main">Beraunite</span>

Beraunite is an iron phosphate mineral. It was first described by August Breithaupt for an occurrence in Beraun currently in the Czech Republic. Beraunite occurs as a secondary mineral in iron ore deposits, and as an alteration product of primary phosphate minerals in granite pegmatites.

<span class="mw-page-title-main">Hureaulite</span>

Hureaulite is a manganese phosphate with the formula Mn2+5(PO3OH)2(PO4)2·4H2O. It was discovered in 1825 and named in 1826 for the type locality, Les Hureaux, Saint-Sylvestre, Haute-Vienne, Limousin, France. It is sometimes written as huréaulite, but the IMA does not recommend this for English language text.

<span class="mw-page-title-main">Lipscombite</span>

Lipscombite (Fe2+,Mn2+)(Fe3+)2(PO4)2(OH)2 is a green gray, olive green, or black. phosphate-based mineral containing iron, manganese, and iron phosphate.

<span class="mw-page-title-main">Allanpringite</span> Phosphate mineral

Allanpringite is a phosphate mineral named after Australian mineralogist Allan Pring of the South Australian Museum. Allanpringite is a Fe3+ analogue Al-phosphate mineral wavellite, but it has a different crystal symmetry – monoclinic instead of orthorhombic in wavellite. It forms needle-like crystals, which are always twinned and form parallel bundles up to about 2 mm long. They are often found in association with other iron phosphates in abandoned iron mines.

Gatehouseite is a manganese hydroxy phosphate mineral with formula Mn5(PO4)2(OH)4. First discovered in 1987, it was identified as a new mineral species in 1992 and named for Bryan M. K. C. Gatehouse (born 1932). As of 2012, it is known from only one mine in South Australia.

<span class="mw-page-title-main">Greifensteinite</span>

Greifensteinite is beryllium phosphate mineral with formula: Ca2Fe2+5Be4(PO4)6(OH)4·6H2O. It is the Fe2+ dominant member of the roscherite group. It crystallizes in the monoclinic crystal system and typically forms prismatic dark olive green crystals.

<span class="mw-page-title-main">Waterhouseite</span> Hydroxy manganese phosphate mineral

Waterhouseite, Mn7(PO4)2(OH)8, is a hydroxy manganese phosphate mineral. It is a medium-soft, brittle mineral occurring in pseudo-orthorhombic monoclinic bladed crystals and orange-brown to dark brown in color. Waterhouseite is on the softer side with a Mohs hardness of 4, has a specific gravity of 3.5 and a yellowish-brown streak. It is named after Frederick George Waterhouse, first director of the South Australian Museum, as well as recognizes the work Waterhouse Club has done in support of the South Australian Museum.

<span class="mw-page-title-main">Serrabrancaite</span>

Serrabrancaite is a mineral with the chemical formula MnPO4•H2O and which is named for the locality where it was found, the Alto Serra Branca Pegmatite. The Alto Serra Branca mine has been in operation since the 1940s. It is located in Paraiba, Brazil near a village named Pedra Lavrada. Tantalite is the main mineral mined here. Specimens of serrabrancaite are kept in the Mineralogical Collections of both the Bergakademie Freiberg, Germany and the Martin-Luther Universität Halle, Institut für Geologische Wissenschaften.

Rockbridgeite is an anhydrous phosphate mineral in the "Rockbridgeite" supergroup with the chemical formula Fe2+Fe3+4(PO4)3(OH)5. It was discovered at the since-shut-down Midvale Mine in Rockbridge County, Virginia, United States. The researcher who first identified it, Clifford Frondel, named it in 1949 for its region of discovery, Rockbridge County.

References

  1. "Chandlers Mill Quarry, Newport, Sullivan Co., New Hampshire, USA". MinDat.org.
  2. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  3. "Triphylite". WebMineral.com. Retrieved July 15, 2015.
  4. "Triphylite". Mindat.org.
  5. 1 2 Anthony, John W.; Bideaux, Richard A.; Bladh, Kenneth W.; Nichols, Monte C. (eds.). "Triphylite" (PDF). Handbook of Mineralogy. Chantilly, VA: Mineralogical Society of America.
  6. IMA-CNMNC List of Mineral Names (May 2015), International Mineralogical Association
  7. 1 2 von Fuchs, Johann Nepomuk (1834). "Ueber ein neues Mineral (Triphylin)". Journal für Praktische Chemie. 3: 98–104. doi:10.1002/prac.18340030120..
  8. 1 2 von Fuchs, Johann Nepomuk (1835). "Vermischte Notizen, 3. Triphylin". Journal für Praktische Chemie. 5: 319. doi:10.1002/prac.18350050138..
  9. "Triphylin". Römpp Online. Retrieved 2020-06-13.
  10. "Lithiophite-Triphylite Series". Mindat.org.