Lithium perchlorate

Last updated
Lithium perchlorate
Lithium Perchlorate.svg
Lithiumperchlorat.png
__ Li +     __ Cl 7+     __ O 2−
Unit cell of lithium perchlorate.
Names
IUPAC name
Lithium perchlorate
Other names
Perchloric acid, lithium salt; Lithium Cloricum
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.307 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/ClHO4.Li/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1 Yes check.svgY
    Key: MHCFAGZWMAWTNR-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/ClHO4.Li/c2-1(3,4)5;/h(H,2,3,4,5);/q;+1/p-1
    Key: MHCFAGZWMAWTNR-REWHXWOFAR
  • [Li+].[O-]Cl(=O)(=O)=O
Properties
LiClO
4
Molar mass
  • 106.39 g/mol (anhydrous)
  • 160.44 g/mol (trihydrate)
AppearanceWhite crystals
Odor Odorless
Density 2.42 g/cm3
Melting point 236 °C (457 °F; 509 K)
Boiling point 430 °C (806 °F; 703 K)
decomposes from 400 °C
  • 42.7 g/100 mL (0 °C)
  • 49 g/100 mL (10 °C)
  • 59.8 g/100 mL (25 °C)
  • 71.8 g/100 mL (40 °C)
  • 119.5 g/100 mL (80 °C)
  • 300 g/100 g (120 °C) [1]
Solubility Soluble in alcohols, ethyl acetate [1]
Solubility in acetone 137 g/100 g [1]
Solubility in alcohols
Solubility in ethyl acetate 95.2 g/100 g [2]
Solubility in ethyl ether 113.7 g/100 g [2]
Structure
Pnma, No. 62
a = 865.7(1) pm, b = 691.29(9) pm, c = 483.23(6) pm [3]
4 formula per cell
tetrahedral at Cl
Thermochemistry
105 J/mol·K [1]
Std molar
entropy
(S298)
125.5 J/mol·K [1]
−380.99 kJ/mol
−254 kJ/mol [1]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Oxidizer, irritant
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-exclam.svg [4]
Danger
H272, H315, H319, H335 [4]
P220, P261, P305+P351+P338 [4]
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
2
0
0
OX
Safety data sheet (SDS) MSDS
Related compounds
Other anions
Lithium chloride
Lithium hypochlorite
Lithium chlorate
Other cations
Sodium perchlorate
Potassium perchlorate
Rubidium perchlorate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Lithium perchlorate is the inorganic compound with the formula LiClO4. This white or colourless crystalline salt is noteworthy for its high solubility in many solvents. It exists both in anhydrous form and as a trihydrate.

Contents

Applications

Inorganic chemistry

Lithium perchlorate is used as a source of oxygen in some chemical oxygen generators. It decomposes at about 400 °C, yielding lithium chloride and oxygen: [5]

LiClO4 → LiCl + 2 O2

Over 60% of the mass of the lithium perchlorate is released as oxygen. [2] It has both the highest oxygen to weight and oxygen to volume ratio of all practical perchlorate salts, and higher oxygen to volume ratio than liquid oxygen. [6]

Lithium perchlorate is used as an oxidizer in some experimental solid rocket propellants, and to produce red colored flame in pyrotechnic compositions. [2] [7]

Organic chemistry

LiClO4 is highly soluble in organic solvents, even diethyl ether. Such solutions are employed in Diels–Alder reactions, where it is proposed that the Lewis acidic Li+ binds to Lewis basic sites on the dienophile, thereby accelerating the reaction. [8]

Lithium perchlorate is also used as a co-catalyst in the coupling of α,β-unsaturated carbonyls with aldehydes, also known as the Baylis–Hillman reaction. [9]

Solid lithium perchlorate is found to be a mild and efficient Lewis acid for promoting cyanosilylation of carbonyl compounds under neutral conditions. [10]

Batteries

Lithium perchlorate is also used as an electrolyte salt in lithium-ion batteries. Lithium perchlorate is chosen over alternative salts such as lithium hexafluorophosphate or lithium tetrafluoroborate when its superior electrical impedance, conductivity, hygroscopicity, and anodic stability properties are of importance to the specific application. [11] However, these beneficial properties are often overshadowed by the electrolyte's strong oxidizing properties, making the electrolyte reactive toward its solvent at high temperatures and/or high current loads. Due to these hazards the battery is often considered unfit for industrial applications. [11]

Biochemistry

Concentrated solutions of lithium perchlorate (4.5 mol/L) are used as a chaotropic agent to denature proteins.

Production

Lithium perchlorate can be manufactured by reaction of sodium perchlorate with lithium chloride. It can be also prepared by electrolysis of lithium chlorate at 200 mA/cm2 at temperatures above 20 °C. [12]

Safety

Perchlorates often give explosive mixtures with organic compounds, finely divided metals, sulfur, and other reducing agents. [12] [2]

Related Research Articles

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

<span class="mw-page-title-main">Ammonium perchlorate</span> Chemical compound

Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propellant called ammonium perchlorate composite propellant. Its instability has involved it in a number of accidents, such as the PEPCON disaster.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

<span class="mw-page-title-main">Oxidizing agent</span> Chemical compound used to oxidize another substance in a chemical reaction

An oxidizing agent is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent. In other words, an oxidizer is any substance that oxidizes another substance. The oxidation state, which describes the degree of loss of electrons, of the oxidizer decreases while that of the reductant increases; this is expressed by saying that oxidizers "undergo reduction" and "are reduced" while reducers "undergo oxidation" and "are oxidized". Common oxidizing agents are oxygen, hydrogen peroxide, and the halogens.

<span class="mw-page-title-main">Potassium chlorate</span> Chemical compound

Potassium chlorate is the inorganic compound with the molecular formula KClO3. In its pure form, it is a white solid. After sodium chlorate, it is the second most common chlorate in industrial use. It is a strong oxidizing agent and its most important application is in safety matches. In other applications it is mostly obsolete and has been replaced by safer alternatives in recent decades. It has been used

<span class="mw-page-title-main">Manganese dioxide</span> Chemical compound

Manganese dioxide is the inorganic compound with the formula MnO
2
. This blackish or brown solid occurs naturally as the mineral pyrolusite, which is the main ore of manganese and a component of manganese nodules. The principal use for MnO
2
is for dry-cell batteries, such as the alkaline battery and the zinc–carbon battery. MnO
2
is also used as a pigment and as a precursor to other manganese compounds, such as KMnO
4
. It is used as a reagent in organic synthesis, for example, for the oxidation of allylic alcohols. MnO
2
has an α-polymorph that can incorporate a variety of atoms in the "tunnels" or "channels" between the manganese oxide octahedra. There is considerable interest in α-MnO
2
as a possible cathode for lithium-ion batteries.

<span class="mw-page-title-main">Chlorate</span> Anion and term for chemical compounds containing it

Chlorate is the common name of the ClO
3
anion, whose chlorine atom is in the +5 oxidation state. The term can also refer to chemical compounds containing this anion, with chlorates being the salts of chloric acid. Other oxyanions of chlorine can be named "chlorate" followed by a Roman numeral in parentheses denoting the oxidation state of chlorine: e.g., the ClO
4
ion commonly called perchlorate can also be called chlorate(VII).

<span class="mw-page-title-main">Hypochlorite</span> Anion

In chemistry, hypochlorite, or chloroxide is an anion with the chemical formula ClO. It combines with a number of cations to form hypochlorite salts. Common examples include sodium hypochlorite and calcium hypochlorite. The Cl-O distance in ClO is 1.69 Å.

<span class="mw-page-title-main">Potassium perchlorate</span> Chemical compound

Potassium perchlorate is the inorganic salt with the chemical formula KClO4. Like other perchlorates, this salt is a strong oxidizer when the solid is heated at high temperature although it usually reacts very slowly in solution with reducing agents or organic substances. This colorless crystalline solid is a common oxidizer used in fireworks, ammunition percussion caps, explosive primers, and is used variously in propellants, flash compositions, stars, and sparklers. It has been used as a solid rocket propellant, although in that application it has mostly been replaced by the more performant ammonium perchlorate.

<span class="mw-page-title-main">Sodium chlorate</span> Chemical compound

Sodium chlorate is an inorganic compound with the chemical formula NaClO3. It is a white crystalline powder that is readily soluble in water. It is hygroscopic. It decomposes above 300 °C to release oxygen and leaves sodium chloride. Several hundred million tons are produced annually, mainly for applications in bleaching pulp to produce high brightness paper.

<span class="mw-page-title-main">Thionyl chloride</span> Inorganic compound (SOCl2)

Thionyl chloride is an inorganic compound with the chemical formula SOCl2. It is a moderately volatile, colourless liquid with an unpleasant acrid odour. Thionyl chloride is primarily used as a chlorinating reagent, with approximately 45,000 tonnes per year being produced during the early 1990s, but is occasionally also used as a solvent. It is toxic, reacts with water, and is also listed under the Chemical Weapons Convention as it may be used for the production of chemical weapons.

<span class="mw-page-title-main">Phosphorus pentachloride</span> Chemical compound

Phosphorus pentachloride is the chemical compound with the formula PCl5. It is one of the most important phosphorus chlorides/oxychlorides, others being PCl3 and POCl3. PCl5 finds use as a chlorinating reagent. It is a colourless, water-sensitive solid, although commercial samples can be yellowish and contaminated with hydrogen chloride.

<span class="mw-page-title-main">Sodium perchlorate</span> Chemical compound

Sodium perchlorate is an inorganic compound with the chemical formula NaClO4. It consists of sodium cations Na+ and perchlorate anions ClO−4. It is a white crystalline, hygroscopic solid that is highly soluble in water and ethanol. It is usually encountered as sodium perchlorate monohydrate NaClO4·H2O. The compound is noteworthy as the most water-soluble of the common perchlorate salts.

<span class="mw-page-title-main">Ethylene carbonate</span> Chemical compound

Ethylene carbonate (sometimes abbreviated EC) is the organic compound with the formula (CH2O)2CO. It is classified as the cyclic carbonate ester of ethylene glycol and carbonic acid. At room temperature (25 °C) ethylene carbonate is a transparent crystalline solid, practically odorless and colorless, and somewhat soluble in water. In the liquid state (m.p. 34-37 °C) it is a colorless odorless liquid.

<span class="mw-page-title-main">Dichlorine hexoxide</span> Chemical compound

Dichlorine hexoxide is the chemical compound with the molecular formula Cl
2
O
6
, which is correct for its gaseous state. However, in liquid or solid form, this chlorine oxide ionizes into the dark red ionic compound chloryl perchlorate [ClO
2
]+
[ClO
4
]
, which may be thought of as the mixed anhydride of chloric and perchloric acids. This compound is a notable perchlorating agent.

<span class="mw-page-title-main">Lithium chlorate</span> Chemical compound

Lithium chlorate is the inorganic chemical compound with the formula LiClO3. Like all chlorates, it is an oxidizer and may become unstable and possibly explosive if mixed with organic materials, reactive metal powders, or sulfur.

Barium perchlorate is a powerful oxidizing agent, with the formula Ba(ClO4)2. It is used in the pyrotechnic industry.

<span class="mw-page-title-main">Calcium perchlorate</span> Chemical compound

Calcium perchlorate is classified as a metal perchlorate salt with the molecular formula Ca(ClO4)2. It is an inorganic compound that is a yellow-white crystalline solid in appearance. As a strong oxidizing agent, it reacts with reducing agents when heated to generate heat and products that may be gaseous. Calcium perchlorate has been categorized as having explosive reactivity. Ca(ClO4)2 is a common chemical on the soil of planet Mars, counting for almost 1% of the Martian dust, by weight.

<span class="mw-page-title-main">Iron(II) perchlorate</span> Chemical compound

Iron(II) perchlorate is the inorganic compound with the formula Fe(ClO4)2·6H2O. A green, water-soluble solid, it is produced by the reaction of iron metal with dilute perchloric acid followed by evaporation of the solution:

<span class="mw-page-title-main">Nitrosyl perchlorate</span> Chemical compound

Nitrosyl perchlorate is the inorganic compound with the formula NO(ClO4). A hygroscopic white solid, it is the salt of the nitrosonium cation with the perchlorate anion. It is an oxidant and strong electrophile, but has fallen out of use with the availability of the closely related salt nitrosonium tetrafluoroborate NO(BF4).

References

  1. 1 2 3 4 5 6 7 "Lithium perchlorate". chemister.ru.
  2. 1 2 3 4 5 "Lithium Perchlorate". AMCP 706-187 Military Pyrotechnics - Properties of Materials. US Army Materiel Command. October 1963. pp. 181–182.
  3. Wickleder, Mathias S. (2003). "Crystal Structure of LiClO4". Zeitschrift für Anorganische und Allgemeine Chemie. 629 (9): 1466–1468. doi:10.1002/zaac.200300114.
  4. 1 2 3 Sigma-Aldrich Co., Lithium perchlorate. Retrieved on 2014-05-09.
  5. Markowitz, M. M.; Boryta, D. A.; Stewart, Harvey Jr. (1964). "Lithium Perchlorate Oxygen Candle. Pyrochemical Source of Pure Oxygen". Industrial & Engineering Chemistry Product Research and Development. 3 (4): 321–330. doi:10.1021/i360012a016.
  6. Herbert Ellern (1968). Military and Civilian Pyrotechnics. Chemical Publishing Company. p. 237. ISBN   978-0-8206-0364-3. OL   37082807M.
  7. Basil T. Fedoroff; Oliver E. Sheffield (January 1975). "Lithium Perchlorate". Encyclopedia of explosives and related items. Vol. 7. Picatinny Arsenal. p. L45. LCCN   61-61759.
  8. Charette, A. B. "Lithium Perchlorate" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi : 10.1002/047084289X.
  9. Lithium Perchlorate Product Detail Page
  10. N. Azizi, M.R. Saidi (2003). "An improved synthesis of cyanohydrins in the presence of solid LiClO4 under solvent-free conditions". Journal of Organometallic Chemistry. 688 (1–2): 283–285. doi:10.1016/j.jorganchem.2003.09.014.
  11. 1 2 Xu, Kang (2004). "Nonaqueous liquid electrolytes for lithium-based rechargeable batteries" (PDF). Chemical Reviews. 104 (10): 4303–4417. doi:10.1021/cr030203g. PMID   15669157 . Retrieved 24 February 2014.
  12. 1 2 Helmut Vogt, Jan Balej, John E. Bennett, Peter Wintzer, Saeed Akbar Sheikh, Patrizio Gallone "Chlorine Oxides and Chlorine Oxygen Acids" in Ullmann's Encyclopedia of Industrial Chemistry 2002, Wiley-VCH. doi : 10.1002/14356007.a06_483

Fuerther reading