Silver perchlorate

Last updated
Silver perchlorate
Silver perchlorate.png
Names
IUPAC name
Silver(I) perchlorate
Systematic IUPAC name
Silver(I) chlorate(VII)
Other names
Perchloric acid, silver(1+) salt
Argentous perchlorate
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.029.123 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 232-035-4
PubChem CID
UNII
  • InChI=1S/Ag.ClHO4/c;2-1(3,4)5/h;(H,2,3,4,5)/q+1;/p-1 Yes check.svgY
    Key: YDHABVNRCBNRNZ-UHFFFAOYSA-M Yes check.svgY
  • InChI=1/Ag.ClHO4/c;2-1(3,4)5/h;(H,2,3,4,5)/q+1;/p-1
    Key: YDHABVNRCBNRNZ-REWHXWOFAI
  • [Ag+].[O-]Cl(=O)(=O)=O
Properties
AgClO4
Molar mass 207.319 g/mol
AppearanceColorless hygroscopic crystals
Density 2.806 g/cm3
Melting point 486 °C (907 °F; 759 K) (decomposes)
557 g/100 mL (25 °C)
792.8 g/100 mL (99 °C)
Solubility soluble in organic solvents
Structure
cubic
Hazards
GHS labelling:
GHS-pictogram-rondflam.svg GHS-pictogram-acid.svg
Danger
H272, H314
P210, P220, P221, P260, P264, P280, P301+P330+P331, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P370+P378, P405, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 2: Intense or continued but not chronic exposure could cause temporary incapacitation or possible residual injury. E.g. chloroformFlammability 0: Will not burn. E.g. waterInstability 2: Undergoes violent chemical change at elevated temperatures and pressures, reacts violently with water, or may form explosive mixtures with water. E.g. white phosphorusSpecial hazard OX: Oxidizer. E.g. potassium perchlorate
2
0
2
OX
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Silver perchlorate is the chemical compound with the formula AgClO4. This white solid forms a monohydrate and is mildly deliquescent. It is a useful source of the Ag+ ion, although the presence of perchlorate presents risks. It is used as a catalyst in organic chemistry.

Contents

Production

Silver perchlorate is created by heating a mixture of perchloric acid with silver nitrate.

Alternatively, it can be prepared by the reaction between barium perchlorate and silver sulfate, or from the reaction of perchloric acid with silver oxide.

Solubility

Silver perchlorate is noteworthy for its solubility in aromatic solvents such as benzene (52.8 g/L) and toluene (1010 g/L). [1] In these solvents, the silver cation binds to the arene, as has been demonstrated by extensive crystallographic studies on crystals obtained from such solutions. [2] [3] Its solubility in water is extremely high, up to 500 g per 100 mL water.

Similar to silver nitrate, silver perchlorate is an effective reagent for replacing halides ligands with perchlorate, which is a weakly or non-coordinating anion. The use of silver perchlorate in chemical synthesis has declined due to concerns about explosiveness of perchlorate salts. Other silver reagents are silver tetrafluoroborate, and the related silver trifluoromethanesulfonate and silver hexafluorophosphate.

Related Research Articles

<span class="mw-page-title-main">Pyridine</span> Heterocyclic aromatic organic compound

Pyridine is a basic heterocyclic organic compound with the chemical formula C5H5N. It is structurally related to benzene, with one methine group (=CH−) replaced by a nitrogen atom (=N−). It is a highly flammable, weakly alkaline, water-miscible liquid with a distinctive, unpleasant fish-like smell. Pyridine is colorless, but older or impure samples can appear yellow, due to the formation of extended, unsaturated polymeric chains, which show significant electrical conductivity. The pyridine ring occurs in many important compounds, including agrochemicals, pharmaceuticals, and vitamins. Historically, pyridine was produced from coal tar. As of 2016, it is synthesized on the scale of about 20,000 tons per year worldwide.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

<span class="mw-page-title-main">Solubility</span> Capacity of a substance to dissolve in a solvent in a homogeneous way

In chemistry, solubility is the ability of a substance, the solute, to form a solution with another substance, the solvent. Insolubility is the opposite property, the inability of the solute to form such a solution.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

<span class="mw-page-title-main">Precipitation (chemistry)</span> Chemical process leading to the settling of an insoluble solid from a solution

In an aqueous solution, precipitation is the process of transforming a dissolved substance into an insoluble solid from a supersaturated solution. The solid formed is called the precipitate. In case of an inorganic chemical reaction leading to precipitation, the chemical reagent causing the solid to form is called the precipitant.

<span class="mw-page-title-main">Nitration</span> Chemical reaction which adds a nitro (–NO₂) group onto a molecule

In organic chemistry, nitration is a general class of chemical processes for the introduction of a nitro group into an organic compound. The term also is applied incorrectly to the different process of forming nitrate esters between alcohols and nitric acid. The difference between the resulting molecular structures of nitro compounds and nitrates is that the nitrogen atom in nitro compounds is directly bonded to a non-oxygen atom, whereas in nitrate esters, the nitrogen is bonded to an oxygen atom that in turn usually is bonded to a carbon atom.

In organometallic chemistry, acetylide refers to chemical compounds with the chemical formulas MC≡CH and MC≡CM, where M is a metal. The term is used loosely and can refer to substituted acetylides having the general structure RC≡CM. Acetylides are reagents in organic synthesis. The calcium acetylide commonly called calcium carbide is a major compound of commerce.

In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.

<span class="mw-page-title-main">Sulfamic acid</span> Chemical compound

Sulfamic acid, also known as amidosulfonic acid, amidosulfuric acid, aminosulfonic acid, sulphamic acid and sulfamidic acid, is a molecular compound with the formula H3NSO3. This colourless, water-soluble compound finds many applications. Sulfamic acid melts at 205 °C before decomposing at higher temperatures to water, sulfur trioxide, sulfur dioxide and nitrogen.

A salt metathesis reaction, sometimes called a double displacement reaction, is a chemical process involving the exchange of bonds between two reacting chemical species which results in the creation of products with similar or identical bonding affiliations. This reaction is represented by the general scheme:

<span class="mw-page-title-main">Silver oxide</span> Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

A solubility chart is a chart describing whether the ionic compounds formed from different combinations of cations and anions dissolve in or precipitate from solution.

The tropylium ion or cycloheptatrienyl cation is an aromatic species with a formula of [C7H7]+. Its name derives from the molecule tropine from which cycloheptatriene (tropylidene) was first synthesized in 1881. Salts of the tropylium cation can be stable, even with nucleophiles of moderate strength e.g., tropylium tetrafluoroborate and tropylium bromide (see below). Its bromide and chloride salts can be made from cycloheptatriene and bromine or phosphorus pentachloride, respectively.

<span class="mw-page-title-main">Tetrafluoroborate</span> Anion

Tetrafluoroborate is the anion BF
4
. This tetrahedral species is isoelectronic with tetrafluoroberyllate (BeF2−
4
), tetrafluoromethane (CF4), and tetrafluoroammonium (NF+
4
) and is valence isoelectronic with many stable and important species including the perchlorate anion, ClO
4
, which is used in similar ways in the laboratory. It arises by the reaction of fluoride salts with the Lewis acid BF3, treatment of tetrafluoroboric acid with base, or by treatment of boric acid with hydrofluoric acid.

Barium perchlorate is a powerful oxidizing agent, with the formula Ba(ClO4)2. It is used in the pyrotechnic industry.

Tetrakis(pyridine)silver(II) peroxydisulfate Chemical compound

Tetrakis(pyridine)silver(II) peroxydisulfate is a chemical compound which contains silver in the rare oxidation state of +2.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright canary yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

<span class="mw-page-title-main">Nickel(II) perchlorate</span> Compound of nickel

Nickel(II) perchlorate is a inorganic compound with the chemical formula of Ni(ClO4)2, and it is a strong oxidizing agent. Its colours are different depending on water. For example, the hydrate forms cyan crystals, the pentahydrate forms green crystals, but the hexahydrate (Ni(ClO4)2·6H2O) forms blue crystals.

<span class="mw-page-title-main">Lead(II) perchlorate</span> Chemical compound

Lead(II) perchlorate is a chemical compound with the formula Pb(ClO4)2·xH2O, where is x is 0,1, or 3. It is an extremely hygroscopic white solid that is very soluble in water.

References

  1. F. Březina; J. Mollin; R. Pastorek; Z. Šindelář (1986). Chemické tabulky anorganických sloučenin[Chemical tables of inorganic compounds] (in Czech). Prague: SNTL.
  2. E. A. Hall Griffith; E. L. Amma (1974). "Metal Ion-Aromatic Complexes. XVIII. Preparation and Molecular Structure of Naphthalene-Tetrakis(silver perchlorate) Tetrahydrate". Journal of the American Chemical Society. 96 (3): 743–749. doi:10.1021/ja00810a018.
  3. R. K. McMullan; T. F. Koetzle; C. J. Fritchie Jr. (1997). "Low-Temperature Neutron Diffraction Study of the Silver Perchlorate–Benzene π Complex". Acta Crystallographica B. 53 (4): 645–653. Bibcode:1997AcCrB..53..645M. doi:10.1107/S0108768197000712. S2CID   97838907.