Silver hypobromite

Last updated
Silver hypobromite
Names
IUPAC name
Silver(I) hypobromite
Other names
Argentous hypobromite, bromooxysilver
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/Ag.BrO/c;1-2/q+1;-1
    Key: QAUJTFHKYYYRLJ-UHFFFAOYSA-N
  • [Ag+].[O-]Br
Properties
AgBrO
Molar mass 203.771 g·mol−1
very soluble
Related compounds
Other anions
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Silver hypobromite is a chemical compound with the chemical formula Ag Br O . [1] [2] [3] This is an ionic compound of silver and the polyatomic ion hypobromite.

Contents

Synthesis

Oxidizing Ag2Br:

4 Ag2Br + 4 H2O + 3 O2 → 4 AgOBr + 4 AgOH + 2 H2O [4]

Also, reaction of double decomposition (exchange reaction):

AgOH + BrHO → AgBrO + H2O

Physical properties

Silver hypobromite decomposes very rapidly even at room temperature. [5]

Related Research Articles

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

The Brønsted–Lowry theory (also called proton theory of acids and bases) is an acid–base reaction theory which was first developed by Johannes Nicolaus Brønsted and Thomas Martin Lowry independently in 1923. The basic concept of this theory is that when an acid and a base react with each other, the acid forms its conjugate base, and the base forms its conjugate acid by exchange of a proton (the hydrogen cation, or H+). This theory generalises the Arrhenius theory.

Cuprates are a class of compounds that contain copper (Cu) atom(s) in an anion. They can be broadly categorized into two main types:

<span class="mw-page-title-main">Sodium thiosulfate</span> Chemical compound

Sodium thiosulfate is an inorganic compound with the formula Na2S2O3·(H2O)x. Typically it is available as the white or colorless pentahydrate, which is a white solid that dissolves well in water. The compound is a reducing agent and a ligand, and these properties underpin its applications.

<span class="mw-page-title-main">Perbromate</span> Ion

In chemistry, the perbromate ion is the anion having the chemical formula BrO
4
. It is an oxyanion of bromine, the conjugate base of perbromic acid, in which bromine has the oxidation state +7. Unlike its chlorine and iodine analogs, it is difficult to synthesize. It has tetrahedral molecular geometry.

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

<span class="mw-page-title-main">Silver oxide</span> Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

<span class="mw-page-title-main">Silver(II) fluoride</span> Chemical compound

Silver(II) fluoride is a chemical compound with the formula AgF2. It is a rare example of a silver(II) compound - silver usually exists in its +1 oxidation state. It is used as a fluorinating agent.

<span class="mw-page-title-main">Hypobromous acid</span> Chemical compound

Hypobromous acid is an inorganic compound with chemical formula of HOBr. It is a weak, unstable acid. It is mainly produced and handled in an aqueous solution. It is generated both biologically and commercially as a disinfectant. Salts of hypobromite are rarely isolated as solids.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

<span class="mw-page-title-main">Hypobromite</span> Ion, and compounds containing the ion

The hypobromite ion, also called alkaline bromine water, is BrO. Bromine is in the +1 oxidation state. The Br–O bond length is 1.82 Å. Hypobromite is the bromine compound analogous to hypochlorites found in common bleaches, and in immune cells. In many ways, hypobromite functions in the same manner as hypochlorite, and is also used as a germicide and antiparasitic in both industrial applications, and in the immune system.

Bromine compounds are compounds containing the element bromine (Br). These compounds usually form the -1, +1, +3 and +5 oxidation states. Bromine is intermediate in reactivity between chlorine and iodine, and is one of the most reactive elements. Bond energies to bromine tend to be lower than those to chlorine but higher than those to iodine, and bromine is a weaker oxidising agent than chlorine but a stronger one than iodine. This can be seen from the standard electrode potentials of the X2/X couples (F, +2.866 V; Cl, +1.395 V; Br, +1.087 V; I, +0.615 V; At, approximately +0.3 V). Bromination often leads to higher oxidation states than iodination but lower or equal oxidation states to chlorination. Bromine tends to react with compounds including M–M, M–H, or M–C bonds to form M–Br bonds.

Hyponitrous acid is a chemical compound with formula H
2
N
2
O
2
or HON=NOH. It is an isomer of nitramide, H2N−NO2; and a formal dimer of azanone, HNO.

<span class="mw-page-title-main">Bromous acid</span> Chemical compound

Bromous acid is the inorganic compound with the formula of HBrO2. It is an unstable compound, although salts of its conjugate base – bromites – have been isolated. In acidic solution, bromites decompose to bromine.

<span class="mw-page-title-main">Cadmium hydroxide</span> Chemical compound

Cadmium hydroxide is an inorganic compound with the formula Cd(OH)2. It is a white crystalline ionic compound that is a key component of nickel–cadmium battery.

<span class="mw-page-title-main">Sodium bismuthate</span> Chemical compound

Sodium bismuthate is an inorganic compound, and a strong oxidiser with chemical formula NaBiO3. It is somewhat hygroscopic, but not soluble in cold water, which can be convenient since the reagent can be easily removed after the reaction. It is one of the few water insoluble sodium salts. Commercial samples may be a mixture of bismuth(V) oxide, sodium carbonate and sodium peroxide.

In chemistry, metal aquo complexes are coordination compounds containing metal ions with only water as a ligand. These complexes are the predominant species in aqueous solutions of many metal salts, such as metal nitrates, sulfates, and perchlorates. They have the general stoichiometry [M(H2O)n]z+. Their behavior underpins many aspects of environmental, biological, and industrial chemistry. This article focuses on complexes where water is the only ligand, but of course many complexes are known to consist of a mix of aquo and other ligands.

Sodium hypobromite is an inorganic compound with the chemical formula NaOBr. It is a sodium salt of hypobromous acid. It consists of sodium cations Na+ and hypobromite anions OBr. It is usually obtained as the pentahydrate, so the compound that is usually called sodium hypobromite actually has the formula NaBrO·5H2O. It is a yellow-orange solid that is soluble in water. It adopts a monoclinic crystal structure with a Br–O bond length of 1.820 Å. It is the bromine analogue of sodium hypochlorite, the active ingredient in common bleach. In practice the salt is usually encountered as an aqueous solution.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

A halous acid, also known as a halogenous acid, is an oxyacid consisting of a halogen atom in the +3 oxidation state single-bonded to a hydroxyl group and double-bonded to an oxygen atom. Examples include chlorous acid, bromous acid, and iodous acid. The conjugate base is a halite.

References

  1. Storer, Francis Humphreys (1864). First outlines of a dictionary of solubilities of chemical substances. Sever and Francis. p. 808. Retrieved 2 December 2024.
  2. Mellor, Joseph William (1922). A Comprehensive Treatise on Inorganic and Theoretical Chemistry. Longmans, Green. p. 271. ISBN   978-0-598-24118-4 . Retrieved 2 December 2024.
  3. Hattori, Heather; Langley, Richard H. (14 April 2014). Chemistry: 1,001 Practice Problems For Dummies (+ Free Online Practice). John Wiley & Sons. p. 197. ISBN   978-1-118-54932-2 . Retrieved 2 December 2024.
  4. "Silver hypobromite". Journal of Society of Chemical Industry (Great Britain). 26: 434. 1907. Retrieved 2 December 2024.
  5. Sneed, Mayce Cannon (1954). Comprehensive Inorganic Chemistry: Copper, silver, and gold, by J. W. Laist. Van Nostrand. p. 176. Retrieved 2 December 2024.