Silver hypoiodite

Last updated
Silver hypoiodite
Names
IUPAC name
Silver(I) hypoiodite
Other names
Argentous hypoiodite, iodoxysilver
Identifiers
Properties
AgIO
Molar mass 250.772 g·mol−1
Related compounds
Other anions
Other cations
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Silver hypoiodite is a chemical compound with the chemical formula Ag I O . [1] [2] [3] This is an ionic compound of silver and the polyatomic ion hypoiodite.

Synthesis

Adding iodine to a dilute neutral solution of silver nitrate: [4]

2 AgNO3 + 2 I + H2O → AgI + AgIO + 2 HNO3

Related Research Articles

<span class="mw-page-title-main">Silver</span> Chemical element with atomic number 47 (Ag)

Silver is a chemical element; it has symbol Ag and atomic number 47. A soft, white, lustrous transition metal, it exhibits the highest electrical conductivity, thermal conductivity, and reflectivity of any metal. Silver is found in the Earth's crust in the pure, free elemental form, as an alloy with gold and other metals, and in minerals such as argentite and chlorargyrite. Most silver is produced as a byproduct of copper, gold, lead, and zinc refining.

Solubility equilibrium is a type of dynamic equilibrium that exists when a chemical compound in the solid state is in chemical equilibrium with a solution of that compound. The solid may dissolve unchanged, with dissociation, or with chemical reaction with another constituent of the solution, such as acid or alkali. Each solubility equilibrium is characterized by a temperature-dependent solubility product which functions like an equilibrium constant. Solubility equilibria are important in pharmaceutical, environmental and many other scenarios.

<span class="mw-page-title-main">Titanic acid</span> Chemical compound

Titanic acid is a general name for a family of chemical compounds of the elements titanium, hydrogen, and oxygen, with the general formula [TiOx(OH)4−2x]n. Various simple titanic acids have been claimed, mainly in the older literature. No crystallographic and little spectroscopic support exists for these materials. Some older literature refers to TiO2 as titanic acid, and the dioxide forms an unstable hydrate when TiCl4 hydrolyzes.

<span class="mw-page-title-main">Silver nitrate</span> Chemical compound

Silver nitrate is an inorganic compound with chemical formula AgNO
3
. It is a versatile precursor to many other silver compounds, such as those used in photography. It is far less sensitive to light than the halides. It was once called lunar caustic because silver was called luna by ancient alchemists who associated silver with the moon. In solid silver nitrate, the silver ions are three-coordinated in a trigonal planar arrangement.

Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics.

In the physical sciences, a partition coefficient (P) or distribution coefficient (D) is the ratio of concentrations of a compound in a mixture of two immiscible solvents at equilibrium. This ratio is therefore a comparison of the solubilities of the solute in these two liquids. The partition coefficient generally refers to the concentration ratio of un-ionized species of compound, whereas the distribution coefficient refers to the concentration ratio of all species of the compound.

HSAB is an acronym for "hard and soft (Lewis) acids and bases". HSAB is widely used in chemistry for explaining the stability of compounds, reaction mechanisms and pathways. It assigns the terms 'hard' or 'soft', and 'acid' or 'base' to chemical species. 'Hard' applies to species which are small, have high charge states, and are weakly polarizable. 'Soft' applies to species which are big, have low charge states and are strongly polarizable.

<span class="mw-page-title-main">Carl Remigius Fresenius</span> German chemist (1818–1897)

Carl Remigius Fresenius, was a German chemist, known for his studies in analytical chemistry.

<span class="mw-page-title-main">Silver oxide</span> Chemical compound

Silver oxide is the chemical compound with the formula Ag2O. It is a fine black or dark brown powder that is used to prepare other silver compounds.

<span class="mw-page-title-main">Silver(II) fluoride</span> Chemical compound

Silver(II) fluoride is a chemical compound with the formula AgF2. It is a rare example of a silver(II) compound - silver usually exists in its +1 oxidation state. It is used as a fluorinating agent.

<span class="mw-page-title-main">Silver carbonate</span> Chemical compound

Silver carbonate is the chemical compound with the formula Ag2CO3. This salt is yellow but typical samples are grayish due to the presence of elemental silver. It is poorly soluble in water, like most transition metal carbonates.

<span class="mw-page-title-main">Silver azide</span> Chemical compound

Silver azide is the chemical compound with the formula AgN3. It is a silver(I) salt of hydrazoic acid. It forms a colorless crystals. Like most azides, it is a primary explosive.

<span class="mw-page-title-main">Potassium pyrosulfate</span> Chemical compound

Potassium pyrosulfate, or potassium disulfate, is an inorganic compound with the chemical formula K2S2O7.

<span class="mw-page-title-main">Iodine oxide</span> Class of chemical compounds

Iodine oxides are chemical compounds of oxygen and iodine. Iodine has only two stable oxides which are isolatable in bulk, iodine tetroxide and iodine pentoxide, but a number of other oxides are formed in trace quantities or have been hypothesized to exist. The chemistry of these compounds is complicated with only a few having been well characterized. Many have been detected in the atmosphere and are believed to be particularly important in the marine boundary layer.

<span class="mw-page-title-main">Organosilver chemistry</span> Study of chemical compounds containing carbon-silver chemical bonds

Organosilver chemistry is the study of organometallic compounds containing a carbon to silver chemical bond. The theme is less developed than organocopper chemistry.

<span class="mw-page-title-main">Silver phosphate</span> Chemical compound

Silver phosphate or silver orthophosphate is a light sensitive, yellow, water-insoluble chemical compound composed of silver and phosphate ions of formula Ag3PO4.

<span class="mw-page-title-main">Renato Zenobi</span> Swiss chemist

Renato Zenobi is a Swiss chemist. He is Professor of Chemistry at ETH Zurich. Throughout his career, Zenobi has contributed to the field of analytical chemistry.

Tetrakis(pyridine)silver(II) peroxydisulfate Chemical compound

Tetrakis(pyridine)silver(II) peroxydisulfate is a chemical compound which contains silver in the rare oxidation state of +2.

Silver hyponitrite is an ionic compound with formula Ag2N2O2 or (Ag+
)2[ON=NO]2−, containing monovalent silver cations and hyponitrite anions. It is a bright yellow solid practically insoluble in water and most organic solvents, including DMF and DMSO.

<span class="mw-page-title-main">Hexafluoroarsenate</span> Chemical compound

The hexafluoroarsenate anion is a chemical species with formula AsF−6. Hexafluoroarsenate is relatively inert, being the conjugate base of the notional superacid hexafluoroarsenic acid.

References

  1. Science Data Booklet. Manjunath.R. 11 July 2020. p. 118. Retrieved 3 December 2024.
  2. Fresenius, C. Remigius (1882). A System of Instruction in Quantitative Chemical Analysis. J. Wiley. p. 295. Retrieved 3 December 2024.
  3. Massey, A. G.; Thompson, N. R.; Johnson, B. F. G. (31 January 2017). The Chemistry of Copper, Silver and Gold: Pergamon Texts in Inorganic Chemistry. Elsevier. p. 108. ISBN   978-1-4831-5839-6 . Retrieved 3 December 2024.
  4. Fresenius, C. Remigius (1915). Quantitative Chemical Analysis. J. Wiley & Sons. p. 572. Retrieved 3 December 2024.