Nitrosyl perchlorate

Last updated
Nitrosyl perchlorate
NOClO4.svg
Nitrosyl perchlorate.png
Names
IUPAC names
Perchloryl nitrite
Nitrosonium perchlorate
Other names
Nitrosyl perchlorate
Perchloric nitrous anhydride
Identifiers
3D model (JSmol)
ChemSpider
PubChem CID
  • InChI=1S/ClNO5/c3-1(4,5)7-2-6
    Key: ONKVXKHGDFDPFZ-UHFFFAOYSA-N
  • N(=O)OCl(=O)(=O)=O
Properties
NOClO4
Molar mass 129.46 g/mol
Appearancewhite solid
Density 2.169 g/cm3 [1]
Melting point 100 °C (212 °F; 373 K) (decomposes)
Reacts
Structure
Rhombic [1]
Thermochemistry
-154.0 kJ/mol [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Nitrosyl perchlorate is the inorganic compound with the formula NO(ClO4). A hygroscopic white solid, it is the salt of the nitrosonium cation with the perchlorate anion. It is an oxidant and strong electrophile, but has fallen out of use with the availability of the closely related salt nitrosonium tetrafluoroborate NO(BF4).

Contents

Preparation

Nitrosyl perchlorate was first produced in 1909 by passing dinitrogen trioxide gas into concentrated perchloric acid: [1] [2]

N2O3 + 2 HClO4 → 2 NOClO4 + H2O

A standard laboratory preparation involves treating a mixture of nitric oxide and nitrogen dioxide with concentrated perchloric acid: [3]

NO2 + NO + 2 HClO4 → 2 NOClO4 + H2O

It can also be prepared by passing dinitrogen trioxide gas into a mixture of sodium perchlorate and sulfuric acid. A much purer product can be produced by reacting dichlorine heptoxide with anhydrous nitric acid. [1]

Structure

The structure of NOClO4 has not been elucidated by X-ray crystallography. However, the Raman spectroscopy of NOClO4 suggests that nitrosyl perchlorate consists of distinct NO+ and ClO4 ions. [4]

Properties

Nitrosyl perchlorate decomposes at 100 °C to nitronium perchlorate, which then subsequently decomposes into chlorine and nitrogen oxides. [5] [6]

This compound hydrolyzes in water to form nitrous acid and perchloric acid: [5]

NOClO4 + H2O → HNO2 + HClO4

With a strong base, such as sodium hydroxide, it produces perchlorate, nitrite, nitrate, nitric oxide, and water. This reaction was used to calculate the heat of formation of nitrosyl perchlorate. As a strong oxidizer, nitrosyl perchlorate reacts explosively with various organic compounds, such as ethanol, acetone, ether, and aniline. [2] [5]

Uses

Nitrosyl perchlorate is used in the laboratory as a perchlorating agent. [7] [8] Although it has been investigated as a potential rocket propellant, it has not been commercialized. [1]

Related Research Articles

<span class="mw-page-title-main">Ammonium perchlorate</span> Chemical compound

Ammonium perchlorate ("AP") is an inorganic compound with the formula NH4ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propellant called ammonium perchlorate composite propellant. Its instability has involved it in a number of accidents, such as the PEPCON disaster.

<span class="mw-page-title-main">Perchloric acid</span> Chemical compound

Perchloric acid is a mineral acid with the formula HClO4. It is an oxoacid of chlorine. Usually found as an aqueous solution, this colorless compound is a stronger acid than sulfuric acid, nitric acid and hydrochloric acid. It is a powerful oxidizer when hot, but aqueous solutions up to approximately 70% by weight at room temperature are generally safe, only showing strong acid features and no oxidizing properties. Perchloric acid is useful for preparing perchlorate salts, especially ammonium perchlorate, an important rocket fuel component. Perchloric acid is dangerously corrosive and readily forms potentially explosive mixtures.

<span class="mw-page-title-main">Aqua regia</span> Mixture of nitric acid and hydrochloric acid in a 1:3 molar ratio

Aqua regia is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was so named by alchemists because it can dissolve noble metals like gold and platinum, though not all metals.

Nitrogen oxide may refer to a binary compound of oxygen and nitrogen, or a mixture of such compounds:

<span class="mw-page-title-main">Nitrous acid</span> Chemical compound

Nitrous acid is a weak and monoprotic acid known only in solution, in the gas phase, and in the form of nitrite salts. It was discovered by Carl Wilhelm Scheele, who called it "phlogisticated acid of niter". Nitrous acid is used to make diazonium salts from amines. The resulting diazonium salts are reagents in azo coupling reactions to give azo dyes.

<span class="mw-page-title-main">Dinitrogen pentoxide</span> Chemical compound

Dinitrogen pentoxide is the chemical compound with the formula N2O5. It is one of the binary nitrogen oxides, a family of compounds that contain only nitrogen and oxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.

An acidic oxide is an oxide that either produces an acidic solution upon addition to water, or acts as an acceptor of hydroxide ions effectively functioning as a Lewis acid. Acidic oxides will typically have a low pKa and may be inorganic or organic. A commonly encountered acidic oxide, carbon dioxide produces an acidic solution when dissolved.

<span class="mw-page-title-main">Hydrazoic acid</span> Unstable and toxic chemical compound

Hydrazoic acid, also known as hydrogen azide, azic acid or azoimide, is a compound with the chemical formula HN3. It is a colorless, volatile, and explosive liquid at room temperature and pressure. It is a compound of nitrogen and hydrogen, and is therefore a pnictogen hydride. It was first isolated in 1890 by Theodor Curtius. The acid has few applications, but its conjugate base, the azide ion, is useful in specialized processes.

<span class="mw-page-title-main">Dichlorine heptoxide</span> Chemical compound

Dichlorine heptoxide is the chemical compound with the formula Cl2O7. This chlorine oxide is the anhydride of perchloric acid. It is produced by the careful distillation of perchloric acid in the presence of the dehydrating agent phosphorus pentoxide:

<span class="mw-page-title-main">Nitrosation and nitrosylation</span> Process of converting organic compounds into nitroso derivatives

Nitrosation and nitrosylation are two names for the process of converting organic compounds or metal complexes into nitroso derivatives, i.e., compounds containing the R−NO functionality. The synonymy arises because the R-NO functionality can be interpreted two different ways, depending on the physico-chemical environment:

The nitrosonium ion is NO+, in which the nitrogen atom is bonded to an oxygen atom with a bond order of 3, and the overall diatomic species bears a positive charge. It can be viewed as nitric oxide with one electron removed. This ion is usually obtained as the following salts: NOClO4, NOSO4H (nitrosylsulfuric acid, more descriptively written ONSO3OH) and NOBF4. The ClO−4 and BF−4 salts are slightly soluble in acetonitrile CH3CN. NOBF4 can be purified by sublimation at 200–250 °C and 0.01 mmHg (1.3 Pa).

<span class="mw-page-title-main">Chloroplatinic acid</span> Chemical compound

Chloroplatinic acid (also known as hexachloroplatinic acid) is an inorganic compound with the formula [H3O]2[PtCl6](H2O)x (0 ≤ x ≤ 6). A red solid, it is an important commercial source of platinum, usually as an aqueous solution. Although often written in shorthand as H2PtCl6, it is the hydronium (H3O+) salt of the hexachloroplatinate anion (PtCl2−
6
). Hexachloroplatinic acid is highly hygroscopic.

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

<span class="mw-page-title-main">Nitrosyl chloride</span> Chemical compound

Nitrosyl chloride is the chemical compound with the formula NOCl. It is a yellow gas that is commonly encountered as a component of aqua regia, a mixture of 3 parts concentrated hydrochloric acid and 1 part of concentrated nitric acid. It is a strong electrophile and oxidizing agent. It is sometimes called Tilden's reagent, after William A. Tilden, who was the first to produce it as a pure compound.

<span class="mw-page-title-main">Dichlorine hexoxide</span> Chemical compound

Dichlorine hexoxide is the chemical compound with the molecular formula Cl
2
O
6
, which is correct for its gaseous state. However, in liquid or solid form, this chlorine oxide ionizes into the dark red ionic compound chloryl perchlorate [ClO
2
]+
[ClO
4
]
, which may be thought of as the mixed anhydride of chloric and perchloric acids. This compound is a notable perchlorating agent.

<span class="mw-page-title-main">Dinitrogen trioxide</span> Chemical compound

Dinitrogen trioxide is the inorganic compound with the formula N2O3. It is a nitrogen oxide. It forms upon mixing equal parts of nitric oxide and nitrogen dioxide and cooling the mixture below −21 °C (−6 °F):

<span class="mw-page-title-main">Iron(II) perchlorate</span> Chemical compound

Iron(II) perchlorate is the inorganic compound with the formula Fe(ClO4)2·6H2O. A green, water-soluble solid, it is produced by the reaction of iron metal with dilute perchloric acid followed by evaporation of the solution:

<span class="mw-page-title-main">Zinc perchlorate</span> Chemical compound

Zinc perchlorate is the inorganic compound with the chemical formula Zn(ClO4)2 which forms the hexahydrate.

<span class="mw-page-title-main">Cobalt(II) perchlorate</span> Chemical compound

Cobalt(II) perchlorate is an inorganic chemical compound with the formula Co(ClO4)2·nH2O (n = 0,6). The pink anhydrous and red hexahydrate forms are both hygroscopic solids.

<span class="mw-page-title-main">Transition metal perchlorate complexes</span> Coordination complexes with perchlorate as ligand

Transition metal perchlorate complexes are coordination complexes with one or more perchlorate ligands. Perchlorate can bind to metals through one, two, three, or all four oxygen atoms. Usually however, perchlorate is a counterion, not a ligand.

References

  1. 1 2 3 4 5 6 "Perchlorates: A Review of their Thermal Decomposition and Combustion, with an Appendix on Perchloric Acid" (PDF). R.P.E. Technical Report. 68 (11). 1968. Retrieved 28 December 2023.
  2. 1 2 K. A. Hofmann; Graf Armin Zedtwitz (1909). "Nitrosyl-perchlorat: das Anhydrid der salpetrigen Säure mit der Überchlorsäure" [Nitrosyl perchlorate: the anhydride of nitrous acid with perchloric acid]. Berichte der deutschen chemischen Gesellschaft (in German). 42 (2): 2031–2034. doi:10.1002/cber.19090420285.
  3. M. Schmeisser (1963). "Nitrosyl perchlorate". In G. Brauer (ed.). Handbook of Preparative Inorganic Chemistry, 2nd Ed. Vol. 2pages=320. NY,NY: Academic Press.
  4. William Rogie Angus; Alan H. Leckie (1935). "Investigations of raman spectra II—The raman spectra of perchloric acid and nitrosyl perchlorate". Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences. 150 (871): 615–618. doi:10.1098/rspa.1935.0125.
  5. 1 2 3 Markowitz, Meyer M.; Ricci, John E.; Goldman, Richard J.; Winternitz, Paul F. (1 July 1957). "The Chemical Properties of Nitrosyl Perchlorate: The Neutralization Equivalent". J. Am. Chem. Soc. 79 (14): 3659–3661. doi:10.1021/ja01571a013 . Retrieved 31 October 2023.
  6. Glasner, A.; Pelly, I.; Steinberg, M. (4 February 1969). "Thermal decomposition of nitrosyl perchlorate and nitryl perchlorate—I: Mechanism of decomposition". J. Inorg. Nucl. Chem. 31: 3395–3404. doi:10.1016/0022-1902(69)80322-2 . Retrieved 31 October 2023.
  7. Thomas J. Wierenga; J. Ivan Legg (1982). "Synthesis and characterization of cobalt(III) nicotinic acid complexes". Inorganic Chemistry. 21 (7): 2881–2885. doi:10.1021/ic00137a071.
  8. M.M. Markowitz; J.E. Ricci; R.J. Goldman; P.F. Winternitz (1960). "A new method for the conversion of inorganic salts to the corresponding perchlorates". Journal of Inorganic and Nuclear Chemistry. 16 (1–2): 159–161. doi:10.1016/0022-1902(60)80104-2.

Further reading