Lithium disilicate

Last updated
Lithium disilicate
Names
IUPAC name
Lithium disilicate
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 266-340-9
PubChem CID
UNII
  • InChI=1S/2Li.O5Si2/c;;1-6(2)5-7(3)4/q2*+1;-2
    Key: WVMPCBWWBLZKPD-UHFFFAOYSA-N
  • [Li+].[Li+].[O-][Si](=O)O[Si](=O)[O-]
Properties
Li2O5Si2
Molar mass 150.04 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Lithium disilicate (Li2Si2O5) is a chemical compound that is a glass ceramic. It is widely used as a dental ceramic due to its strength, machinability and translucency.

Use

Lithium disilicate has found applications in dentistry as a dental ceramic material for dental restorations such as crowns, bridges, and veneers in the form of Li2Si2O5. Lithium disilicate has an unusual microstructure that consists of many randomly oriented small and interlocking plate-like needle-like crystals. This structure causes cracks to be deflected, blunted, and/or to branch, which prevents cracks from growing. [2] Lithium disilicate has a biaxial flexible strength in the range of 360 MPa to 400 MPa; in comparison, for metal ceramics this is around 80 to 100 MPa, for veneered zirconia it is approximately 100 MPa, and for leucite glass ceramic it is approximately 150 to 160 MPa. It has high hardness (5.92 +/- 0.18 GPa) and fracture toughness (3.3 +/- 0.14 MPa m1/2). In addition, it can be made to have an appearance that very closely resembles that of natural human teeth.

Lithium disilicate is also used as a non-conductive seal, enamel or feed-through insulator in nickel superalloys or stainless steel, as it has a high thermal expansion. [3] [4]

Related Research Articles

A ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick.

<span class="mw-page-title-main">Zirconium dioxide</span> Chemical compound

Zirconium dioxide, sometimes known as zirconia, is a white crystalline oxide of zirconium. Its most naturally occurring form, with a monoclinic crystalline structure, is the mineral baddeleyite. A dopant stabilized cubic structured zirconia, cubic zirconia, is synthesized in various colours for use as a gemstone and a diamond simulant.

<span class="mw-page-title-main">Corrosion</span> Gradual destruction of materials by chemical reaction with its environment

Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials by chemical or electrochemical reaction with their environment. Corrosion engineering is the field dedicated to controlling and preventing corrosion.

<span class="mw-page-title-main">Transparent ceramics</span> Ceramic materials that are optically transparent

Many ceramic materials, both glassy and crystalline, have found use as optically transparent materials in various forms from bulk solid-state components to high surface area forms such as thin films, coatings, and fibers. Such devices have found widespread use for various applications in the electro-optical field including: optical fibers for guided lightwave transmission, optical switches, laser amplifiers and lenses, hosts for solid-state lasers and optical window materials for gas lasers, and infrared (IR) heat seeking devices for missile guidance systems and IR night vision. In commercial and general knowledge domains, it is commonly accepted that transparent ceramics or ceramic glass are varieties of strengthened glass, such as those used for the screen glass on an iPhone.

<span class="mw-page-title-main">Brittleness</span> Liability of breakage from stress without significant plastic deformation

A material is brittle if, when subjected to stress, it fractures with little elastic deformation and without significant plastic deformation. Brittle materials absorb relatively little energy prior to fracture, even those of high strength. Breaking is often accompanied by a sharp snapping sound.

Dental restoration, dental fillings, or simply fillings are treatments used to restore the function, integrity, and morphology of missing tooth structure resulting from caries or external trauma as well as to the replacement of such structure supported by dental implants. They are of two broad types—direct and indirect—and are further classified by location and size. Root canal therapy, for example, is a restorative technique used to fill the space where the dental pulp normally resides and are more hectic than a normal filling.

<span class="mw-page-title-main">Dental porcelain</span>

Dental porcelain is a dental material used by dental technicians to create biocompatible lifelike dental restorations, such as crowns, bridges, and veneers. Evidence suggests they are an effective material as they are biocompatible, aesthetic, insoluble and have a hardness of 7 on the Mohs scale. For certain dental prostheses, such as three-unit molars porcelain fused to metal or in complete porcelain group, zirconia-based restorations are recommended.

<span class="mw-page-title-main">Crown (dental restoration)</span> Dental prosthetic that recreates the visible portion of a tooth

In dentistry, a crown or a dental cap is a type of dental restoration that completely caps or encircles a tooth or dental implant. A crown may be needed when a large dental cavity threatens the health of a tooth. Some dentists will also finish root canal treatment by covering the exposed tooth with a crown. A crown is typically bonded to the tooth by dental cement. They can be made from various materials, which are usually fabricated using indirect methods. Crowns are used to improve the strength or appearance of teeth and to halt deterioration. While beneficial to dental health, the procedure and materials can be costly.

Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form, and eventually lead to structural failure.

<span class="mw-page-title-main">Bioactive glass</span> Surface reactive glass-ceramic biomaterial

Bioactive glasses are a group of surface reactive glass-ceramic biomaterials and include the original bioactive glass, Bioglass. The biocompatibility and bioactivity of these glasses has led them to be used as implant devices in the human body to repair and replace diseased or damaged bones. Most bioactive glasses are silicate-based glasses that are degradable in body fluids and can act as a vehicle for delivering ions beneficial for healing. Bioactive glass is differentiated from other synthetic bone grafting biomaterials, in that it is the only one with anti-infective and angiogenic properties.

<span class="mw-page-title-main">Veneer (dentistry)</span> Layer of material placed over a tooth

In dentistry, a veneer is a layer of material placed over a tooth. Veneers can improve the aesthetics and function of a smile and protect the tooth's surface from damage.

<span class="mw-page-title-main">Ceramic knife</span> Knife with a blade made out of non-metallic material

A ceramic knife is a knife with a ceramic blade typically made from zirconium dioxide (ZrO2; also known as zirconia), rather than the steel used for most knives. Ceramic knife blades are usually produced through the dry-pressing and firing of powdered zirconia using solid-state sintering. The blades typically score 8.5 on the Mohs scale of mineral hardness, compared to 4.5 for normal steel and 7.5 to 8 for hardened steel and 10 for diamond. The resultant blade has a hard edge that stays sharp for much longer than conventional steel blades. However, the blade is brittle, subject to chipping, and will break rather than flex if twisted. The ceramic blade is sharpened by grinding the edges with a diamond-dust-coated grinding wheel.

<span class="mw-page-title-main">Ceramic engineering</span> Science and technology of creating objects from inorganic, non-metallic materials

Ceramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties.

<span class="mw-page-title-main">CAD/CAM dentistry</span> Computer-aided design and manufacturing of dental prostheses

CAD/CAM dentistry is a field of dentistry and prosthodontics using CAD/CAM to improve the design and creation of dental restorations, especially dental prostheses, including crowns, crown lays, veneers, inlays and onlays, fixed dental prostheses (bridges), dental implant supported restorations, dentures, and orthodontic appliances. CAD/CAM technology allows the delivery of a well-fitting, aesthetic, and a durable prostheses for the patient. CAD/CAM complements earlier technologies used for these purposes by any combination of increasing the speed of design and creation; increasing the convenience or simplicity of the design, creation, and insertion processes; and making possible restorations and appliances that otherwise would have been infeasible. Other goals include reducing unit cost and making affordable restorations and appliances that otherwise would have been prohibitively expensive. However, to date, chairside CAD/CAM often involves extra time on the part of the dentist, and the fee is often at least two times higher than for conventional restorative treatments using lab services.

<span class="mw-page-title-main">Zerodur</span> Extremely durable glass-ceramic

Zerodur is a lithium-aluminosilicate glass-ceramic manufactured by Schott AG. Zerodur has a near zero coefficient of thermal expansion (CTE), and is used for high-precision applications in telescope optics, microlithography machines and inertial navigation systems.

<span class="mw-page-title-main">Solid</span> State of matter

Solid is one of the four fundamental states of matter along with liquid, gas, and plasma. The molecules in a solid are closely packed together and contain the least amount of kinetic energy. A solid is characterized by structural rigidity and resistance to a force applied to the surface. Unlike a liquid, a solid object does not flow to take on the shape of its container, nor does it expand to fill the entire available volume like a gas. The atoms in a solid are bound to each other, either in a regular geometric lattice, or irregularly. Solids cannot be compressed with little pressure whereas gases can be compressed with little pressure because the molecules in a gas are loosely packed.

Macor is the trademark for a machinable glass-ceramic developed and sold by Corning Inc. It is a white material that looks somewhat like porcelain. Macor is a good thermal insulator and is stable up to temperatures of 1000 °C, with very little thermal expansion or outgassing. It can be machined using standard metalworking tools.

Materials that are used for biomedical or clinical applications are known as biomaterials. The following article deals with fifth generation biomaterials that are used for bone structure replacement. For any material to be classified for biomedical applications, three requirements must be met. The first requirement is that the material must be biocompatible; it means that the organism should not treat it as a foreign object. Secondly, the material should be biodegradable ; the material should harmlessly degrade or dissolve in the body of the organism to allow it to resume natural functioning. Thirdly, the material should be mechanically sound; for the replacement of load-bearing structures, the material should possess equivalent or greater mechanical stability to ensure high reliability of the graft.

<span class="mw-page-title-main">SAE 304 stainless steel</span> Most common stainless steel

SAE 304 stainless steel is the most common stainless steel. It is an alloy of iron, carbon, chromium and nickel. It is an austenitic stainless steel, and is therefore not magnetic. It is less electrically and thermally conductive than carbon steel. It has a higher corrosion resistance than regular steel and is widely used because of the ease in which it is formed into various shapes.

SAE Type 630 stainless steel is a grade of martensitic precipitation hardened stainless steel. It contains approximately 15–17.5% chromium and 3–5% nickel, as well as 3–5% copper. The name comes from the chemical makeup which is approximately 17% chromium and 4% nickel. SUS630 is the same as 17-4PH, and they both refer to the same grade.

References

  1. Ivoclar Vivadent AG (8 November 2012). "Safety data sheet" (PDF). Retrieved 2 March 2020.
  2. Shenoy A, Shenoy N (2010). "Dental ceramics: An update". J Conserv Dent. 13 (4): 195–203. doi: 10.4103/0972-0707.73379 . PMC   3010023 . PMID   21217946.
  3. Holand, Wolfram; Beall, George H. (2019). Glass-Ceramic Technology. John Wiley & Sons. ISBN   978-1-119-42369-0.
  4. Dai, Steve (September 2015). "Reduction-oxidation Enabled Glass-ceramics to Stainless Steel Bonding Part I: screening of doping oxidants". Sandia Journal Manuscript; Not Yet Accepted for Publication. OSTI. Retrieved 2 March 2020.