Lucifer yellow

Last updated
Lucifer yellow
Lucifer yellow.svg
Names
Preferred IUPAC name
Dilithium 6-amino-2-(hydrazinecarbonyl)-1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinoline-5,8-disulfonate
Identifiers
  • 77944-88-8 X mark.svgN
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
PubChem CID
UNII
  • InChI=1S/C13H10N4O9S2.2Li/c14-10-5-1-4(27(21,22)23)2-6-9(5)7(3-8(10)28(24,25)26)12(19)17(11(6)18)13(20)16-15;;/h1-3H,14-15H2,(H,16,20)(H,21,22,23)(H,24,25,26);;/q;2*+1/p-2 X mark.svgN
    Key: DLBFLQKQABVKGT-UHFFFAOYSA-L X mark.svgN
  • c1c(cc2c3c1c(c(cc3c(=O)n(c2=O)C(=O)NN)S(=O)(=O)[O-])N)S(=O)(=O)[O-].[Li+].[Li+]
Properties
C13H10Li2N4O9S2
Molar mass 444.24 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)
Infobox references

Lucifer yellow is a fluorescent dye used in cell biology. [1] The key property of Lucifer yellow is that it can be readily visualized in both living and fixed cells using a fluorescence microscope. Lucifer yellow was invented by Walter W. Stewart at the National Institutes of Health and patented in 1978. [2]

Contents

Preparations

For common usage it is compounded with carbohydrazide (CH) and prepared as a lithium salt. The CH group allows it to be covalently linked to surrounding biomolecules during aldehyde fixation. [3]

Other cations such as ammonium or potassium can be used when lithium is undesirable, but the resulting salts are less soluble in water.

Lucifer yellow can also be compounded as a vinyl sulfone, with ethylenediamine, or with cadaverine. [ clarification needed ]

Related Research Articles

Lithium carbonate Chemical compound

Lithium carbonate is an inorganic compound, the lithium salt of carbonate with the formula Li
2
CO
3
. This white salt is widely used in the processing of metal oxides, and as a drug for the treatment of mood disorders.

Glutamic acid Amino acid and neurotransmitter

Glutamic acid is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is non-essential in humans, meaning that the body can synthesize it. It is also an excitatory neurotransmitter, in fact the most abundant one, in the vertebrate nervous system. It serves as the precursor for the synthesis of the inhibitory gamma-aminobutyric acid (GABA) in GABA-ergic neurons.

In chemistry, a hydride is formally the anion of hydrogen, H. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

Lithium polymer battery Lithium-ion battery using a polymer electrolyte

A lithium polymer battery, or more correctly lithium-ion polymer battery, is a rechargeable battery of lithium-ion technology using a polymer electrolyte instead of a liquid electrolyte. High conductivity semisolid (gel) polymers form this electrolyte. These batteries provide higher specific energy than other lithium battery types and are used in applications where weight is a critical feature, such as mobile devices, radio-controlled aircraft and some electric vehicles.

Iron(III) chloride Inorganic compound

Iron(III) chloride is the inorganic compound with the formula. Also called ferric chloride, it is a common compound of iron in the +3 oxidation state. The anhydrous compound is a crystalline solid with a melting point of 307.6 °C. The color depends on the viewing angle: by reflected light the crystals appear dark green, but by transmitted light they appear purple-red.

Cadmium sulfide Chemical compound

Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores sphalerite and wurtzite, which are the major economic sources of cadmium. As a compound that is easy to isolate and purify, it is the principal source of cadmium for all commercial applications. Its vivid yellow color led to its adoption as a pigment for the yellow paint "cadmium yellow" in the 18th century.

Lithium nitrate Chemical compound

Lithium nitrate is an inorganic compound with the formula LiNO3. It is the lithium salt of nitric acid (an alkali metal nitrate). The salt is deliquescent, absorbing water to form the hydrated form, lithium nitrate trihydrate. Its eutectics are of interest for heat transfer fluids.

Lithium diisopropylamide Chemical compound

Lithium diisopropylamide (commonly abbreviated LDA) is a chemical compound with the molecular formula [(CH3)2CH]2NLi. It is used as a strong base and has been widely utilized due to its good solubility in non-polar organic solvents and non-nucleophilic nature. It is a colorless solid, but is usually generated and observed only in solution. It was first prepared by Hamell and Levine in 1950 along with several other hindered lithium diorganylamides to effect the deprotonation of esters at the α position without attack of the carbonyl group.

Lithium acetate Chemical compound

Lithium acetate (CH3COOLi) is a salt of lithium and acetic acid.

<i>n</i>-Butyllithium Organolithium reagent

n-Butyllithium is an organolithium reagent. It is widely used as a polymerization initiator in the production of elastomers such as polybutadiene or styrene-butadiene-styrene (SBS). Also, it is broadly employed as a strong base (superbase) in the synthesis of organic compounds as in the pharmaceutical industry.

Lithium iodide Chemical compound

Lithium iodide, or LiI, is a compound of lithium and iodine. When exposed to air, it becomes yellow in color, due to the oxidation of iodide to iodine. It crystallizes in the NaCl motif. It can participate in various hydrates.

Lithium sulfide Chemical compound

Lithium sulfide is the inorganic compound with the formula Li2S. It crystallizes in the antifluorite motif, described as the salt (Li+)2S2−. It forms a solid yellow-white deliquescent powder. In air, it easily hydrolyses to release hydrogen sulfide (rotten egg odor).

Tetramethylethylenediamine Chemical compound

Tetramethylethylenediamine (TMEDA or TEMED) is a chemical compound with the formula (CH3)2NCH2CH2N(CH3)2. This species is derived from ethylenediamine by replacement of the four amine hydrogens with four methyl groups. It is a colorless liquid, although old samples often appear yellow. Its odor is remarkably similar to that of rotting fish.

Lithium amide Chemical compound

Lithium amide or lithium azanide is an inorganic compound with the chemical formula LiNH2. It is a white solid with a tetragonal crystal structure. Lithium amide can be made by treating lithium metal with liquid ammonia:

Lithium bis(trimethylsilyl)amide Chemical compound

Lithium bis(trimethylsilyl)amide is a lithiated organosilicon compound with the formula LiN(SiMe3)2. It is commonly abbreviated as LiHMDS (lithium hexamethyldisilazide - a reference to its conjugate acid HMDS) and is primarily used as a strong non-nucleophilic base and as a ligand. Like many lithium reagents, it has a tendency to aggregate and will form a cyclic trimer in the absence of coordinating species.

Lithium carbide, Li
2
C
2
, often known as dilithium acetylide, is a chemical compound of lithium and carbon, an acetylide. It is an intermediate compound produced during radiocarbon dating procedures. Li
2
C
2
is one of an extensive range of lithium-carbon compounds which include the lithium-rich Li
4
C
, Li
6
C
2
, Li
8
C
3
, Li
6
C
3
, Li
4
C
3
, Li
4
C
5
, and the graphite intercalation compounds LiC
6
, LiC
12
, and LiC
18
.
Li
2
C
2
is the most thermodynamically-stable lithium-rich compound and the only one that can be obtained directly from the elements. It was first produced by Moissan, in 1896 who reacted coal with lithium carbonate.

Zinc hydride is an inorganic compound with the chemical formula ZnH2. It is a white, odourless solid which slowly decomposes into its elements at room temperature; despite this it is the most stable of the binary first row transition metal hydrides. A variety of coordination compounds containing Zn-H bonds are used as reducing agents, however ZnH2 itself has no common applications.

Lithium cyanide Chemical compound

Lithium cyanide is an inorganic compound with the chemical formula LiCN. It is a toxic, white colored, hygroscopic, water-soluble salt that finds only niche uses.

A dual carbon battery is one that uses carbon for both the cathode and the anode.

Pentamethylantimony Chemical compound

Pentamethylantimony or pentamethylstiborane is an organometalllic compound containing five methyl groups bound to an antimony atom with formula Sb(CH3)5. It is an example of a hypervalent compound. The molecular shape is trigonal bipyramid. Some other antimony(V) organometallic compounds include pentapropynylantimony (Sb(CCCH3)5) and pentaphenyl antimony (Sb(C6H5)5). Other known pentamethyl-pnictides include pentamethylbismuth and pentamethylarsenic.

References

  1. Hanani, Menachem (January 2012). "Lucifer yellow – an angel rather than the devil". Journal of Cellular and Molecular Medicine. 16 (2): 22–31. doi:10.1111/j.1582-4934.2011.01378.x. PMC   3823090 . PMID   21740513.
  2. Patent description
  3. "Lucifer Yellow CH, Lithium Salt". Molecular Probes. Retrieved 17 March 2014.