Lithium aspartate

Last updated

Lithium aspartate
Lithium aspartate.svg
Clinical data
AHFS/Drugs.com Monograph
Routes of
administration
Oral
Legal status
Legal status
Identifiers
CAS Number
PubChem CID
ChemSpider
UNII
CompTox Dashboard (EPA)
Chemical and physical data
Formula C4H6LiNO4
Molar mass 139.04 g·mol−1
3D model (JSmol)
  • [Li+].N[C@@H](CC(O)=O)C([O-])=O
  • InChI=InChI=1S/C4H7NO4.Li/c5-2(4(8)9)1-3(6)7;/h2H,1,5H2,(H,6,7)(H,8,9);/q;+1/p-1/t2-;/m0./s1 X mark.svgN
  • Key:NFNOWBZQMRFQDG-DKWTVANSSA-M X mark.svgN

Lithium aspartate (C4H6LiNO4) is a salt of aspartic acid and lithium. It is sometimes marketed as a dietary supplement used in small doses to treat certain medical conditions; however, there are no systematic reviews supporting the efficacy, or safety of lithium aspartate and it is not approved by the U.S. Food and Drug Administration (FDA) for the treatment of any medical condition. Published research on lithium aspartate is sparse. [1] [2] [3]

Contents

Aspartic acid stimulates the NMDA receptor. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Phencyclidine</span> Dissociative hallucinogenic drug, mostly used recreationally

Phencyclidine or phenylcyclohexyl piperidine (PCP), also known in its use as a street drug as angel dust among other names, is a dissociative anesthetic mainly used recreationally for its significant mind-altering effects. PCP may cause hallucinations, distorted perceptions of sounds, and violent behavior. As a recreational drug, it is typically smoked, but may be taken by mouth, snorted, or injected. It may also be mixed with cannabis or tobacco.

<span class="mw-page-title-main">Aspartic acid</span> Amino acid

Aspartic acid, is an α-amino acid that is used in the biosynthesis of proteins. The L-isomer of aspartic acid is one of the 22 proteinogenic amino acids, i.e., the building blocks of proteins. D-aspartic acid is one of two D-amino acids commonly found in mammals. Apart from a few rare exceptions, D-aspartic acid is not used for protein synthesis but is incorporated into some peptides and plays a role as a neurotransmitter/neuromodulator.

<span class="mw-page-title-main">Ornithine</span> Chemical compound

Ornithine is a non-proteinogenic α-amino acid that plays a role in the urea cycle. Ornithine is abnormally accumulated in the body in ornithine transcarbamylase deficiency. The radical is ornithyl.

<span class="mw-page-title-main">NMDA receptor</span> Glutamate receptor and ion channel protein found in nerve cells

The N-methyl-D-aspartatereceptor (also known as the NMDA receptor or NMDAR), is a glutamate receptor and predominantly Ca2+ ion channel found in neurons. The NMDA receptor is one of three types of ionotropic glutamate receptors, the other two being AMPA and kainate receptors. Depending on its subunit composition, its ligands are glutamate and glycine (or D-serine). However, the binding of the ligands is typically not sufficient to open the channel as it may be blocked by Mg2+ ions which are only removed when the neuron is sufficiently depolarized. Thus, the channel acts as a "coincidence detector" and only once both of these conditions are met, the channel opens and it allows positively charged ions (cations) to flow through the cell membrane. The NMDA receptor is thought to be very important for controlling synaptic plasticity and mediating learning and memory functions.

<span class="mw-page-title-main">Rimantadine</span> Drug used to treat influenzavirus A infection

Rimantadine is an orally administered antiviral drug used to treat, and in rare cases prevent, influenzavirus A infection. When taken within one to two days of developing symptoms, rimantadine can shorten the duration and moderate the severity of influenza. Rimantadine can mitigate symptoms, including fever. Both rimantadine and the similar drug amantadine are derivates of adamantane. Rimantadine is found to be more effective than amantadine because when used the patient displays fewer symptoms. Rimantadine was approved by the Food and Drug Administration (FDA) in 1994.

<span class="mw-page-title-main">Ligand-gated ion channel</span> Type of ion channel transmembrane protein

Ligand-gated ion channels (LICs, LGIC), also commonly referred to as ionotropic receptors, are a group of transmembrane ion-channel proteins which open to allow ions such as Na+, K+, Ca2+, and/or Cl to pass through the membrane in response to the binding of a chemical messenger (i.e. a ligand), such as a neurotransmitter.

<span class="mw-page-title-main">Neuroprotection</span> Relative preservation of neurons

Neuroprotection refers to the relative preservation of neuronal structure and/or function. In the case of an ongoing insult the relative preservation of neuronal integrity implies a reduction in the rate of neuronal loss over time, which can be expressed as a differential equation.

<span class="mw-page-title-main">Felbamate</span> Chemical compound

Felbamate is an anticonvulsant used in the treatment of epilepsy. It is used to treat partial seizures in adults and partial and generalized seizures associated with Lennox–Gastaut syndrome in children. However, an increased risk of potentially fatal aplastic anemia and/or liver failure limit the drug's usage to severe refractory epilepsy.

Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane. The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family. In the brain, EAATs remove glutamate from the synaptic cleft and extrasynaptic sites via glutamate reuptake into glial cells and neurons, while VGLUTs move glutamate from the cell cytoplasm into synaptic vesicles. Glutamate transporters also transport aspartate and are present in virtually all peripheral tissues, including the heart, liver, testes, and bone. They exhibit stereoselectivity for L-glutamate but transport both L-aspartate and D-aspartate.

<span class="mw-page-title-main">D-amino acid oxidase</span> Enzyme

D-amino acid oxidase is an enzyme with the function on a molecular level to oxidize D-amino acids to the corresponding α-keto acids, producing ammonia and hydrogen peroxide. This results in a number of physiological effects in various systems, most notably the brain. The enzyme is most active toward neutral D-amino acids, and not active toward acidic D-amino acids. One of its most important targets in mammals is D-Serine in the central nervous system. By targeting this and other D-amino acids in vertebrates, DAAO is important in detoxification. The role in microorganisms is slightly different, breaking down D-amino acids to generate energy.

<span class="mw-page-title-main">Aspartic protease</span> Protein family

Aspartic proteases are a catalytic type of protease enzymes that use an activated water molecule bound to one or more aspartate residues for catalysis of their peptide substrates. In general, they have two highly conserved aspartates in the active site and are optimally active at acidic pH. Nearly all known aspartyl proteases are inhibited by pepstatin.

<span class="mw-page-title-main">NMDA receptor antagonist</span> Class of anesthetics

NMDA receptor antagonists are a class of drugs that work to antagonize, or inhibit the action of, the N-Methyl-D-aspartate receptor (NMDAR). They are commonly used as anesthetics for humans and animals; the state of anesthesia they induce is referred to as dissociative anesthesia.

<span class="mw-page-title-main">Tachykinin receptor 1</span> Protein-coding gene in the species Homo sapiens

The tachykinin receptor 1 (TACR1) also known as neurokinin 1 receptor (NK1R) or substance P receptor (SPR) is a G protein coupled receptor found in the central nervous system and peripheral nervous system. The endogenous ligand for this receptor is Substance P, although it has some affinity for other tachykinins. The protein is the product of the TACR1 gene.

<span class="mw-page-title-main">Niflumic acid</span> Drug used in treatment of joint and muscular pain

Niflumic acid is a drug used for joint and muscular pain. It is categorized as an inhibitor of cyclooxygenase-2. In experimental biology, it has been employed to inhibit chloride channels. It has also been reported to act on GABA-A and NMDA channels and to block T-type calcium channels.

<span class="mw-page-title-main">Metabotropic glutamate receptor 3</span> Mammalian protein found in humans

Metabotropic glutamate receptor 3 (mGluR3) is an inhibitory Gi/G0-coupled G-protein coupled receptor (GPCR) generally localized to presynaptic sites of neurons in classical circuits. However, in higher cortical circuits in primates, mGluR3 are localized post-synaptically, where they strengthen rather than weaken synaptic connectivity. In humans, mGluR3 is encoded by the GRM3 gene. Deficits in mGluR3 signaling have been linked to impaired cognition in humans, and to increased risk of schizophrenia, consistent with their expanding role in cortical evolution.

<span class="mw-page-title-main">GRIN2A</span> Protein-coding gene in the species Homo sapiens

Glutamate [NMDA] receptor subunit epsilon-1 is a protein that in humans is encoded by the GRIN2A gene. With 1464 amino acids, the canonical GluN2A subunit isoform is large. GluN2A-short isoforms specific to primates can be produced by alternative splicing and contain 1281 amino acids.

Gacyclidine is a psychoactive drug which acts as a dissociative via functioning as a non-competitive NMDA receptor antagonist. It is closely related to phencyclidine (PCP), and specifically, is a derivative of tenocyclidine (TCP).

<span class="mw-page-title-main">Polyaspartic acid</span> Chemical compound

Polyaspartic acid (PASA) is a biodegradable, water-soluble condensation polymer based on the amino acid aspartic acid. It is a biodegradable replacement for water softeners and related applications. PASA can be chemically crosslinked with a wide variety of methods to yield PASA hydrogels. The resulting hydrogels are pH-sensitive such that under acidic conditions, they shrink, while the swelling capacity increases under alkaline conditions.

<span class="mw-page-title-main">Lithium (medication)</span> Mood-stabilizing psychiatric medication

Certain lithium compounds, also known as lithium salts, are used as psychiatric medication, primarily for bipolar disorder and for major depressive disorder. Lithium is taken orally.

<span class="mw-page-title-main">4-Chlorokynurenine</span> Investigational antidepressant compound

L-4-Chlorokynurenine is an orally active small molecule prodrug of 7-chlorokynurenic acid, a NMDA receptor antagonist. It was investigated as a potential rapid-acting antidepressant.

References

  1. Müller-Oerlinghausen B, Imiela M (June 1986). "Is lithium aspartate at low serum levels more effective than the usual lithium salts?". Nervenarzt. 57 (6): 370–3. PMID   3736729.
  2. Olbrich R, Watzl H, Völter M, Siedow H (March 1991). "Lithium in the treatment of chronic alcoholic patients with brain damage--a controlled study". Nervenarzt. 62 (3): 182–6. PMID   2052117.
  3. Daunderer M (September 1982). "Lithium aspartate in drug dependence". Fortschr. Med. 100 (33): 1500–2. PMID   7129311.
  4. Chen PE, Geballe MT, Stansfeld PJ, Johnston AR, Yuan H, Jacob AL, et al. (May 2005). "Structural features of the glutamate binding site in recombinant NR1/NR2A N-methyl-D-aspartate receptors determined by site-directed mutagenesis and molecular modeling". Molecular Pharmacology. 67 (5): 1470–84. doi:10.1124/mol.104.008185. PMID   15703381. S2CID   13505187.