Hypersomnia | |
---|---|
Other names | Hypersomnolence |
Specialty | Psychiatry, neurology, sleep medicine |
Hypersomnia is a neurological disorder of excessive time spent sleeping or excessive sleepiness. It can have many possible causes (such as seasonal affective disorder) and can cause distress and problems with functioning. [1] In the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), hypersomnolence, of which there are several subtypes, appears under sleep-wake disorders. [2]
Hypersomnia is a pathological state characterized by a lack of alertness during the waking episodes of the day. [3] It is not to be confused with fatigue, which is a normal physiological state. [4] Daytime sleepiness appears most commonly during situations where little interaction is needed. [5]
Since hypersomnia impairs patients' attention levels (wakefulness), quality of life may be impacted as well. [6] This is especially true for people whose jobs request high levels of attention, such as in the healthcare field. [6]
This is not to be confused with clinophilia, a sleep disorder where a person intentionally refuses to get out of bed, regardless of a disease or not.
The main symptom of hypersomnia is excessive daytime sleepiness (EDS), or prolonged nighttime sleep, [7] which has occurred for at least 3 months prior to diagnosis. [8]
Sleep drunkenness is also a symptom found in hypersomniac patients. [9] [10] It is a difficulty transitioning from sleep to wake. [10] Individuals experiencing sleep drunkenness report waking with confusion, disorientation, slowness and repeated returns to sleep. [9] [11]
It also appears in non-hypersomniac persons, for example after a night of insufficient sleep. [9] Fatigue and consumption of alcohol or hypnotics can cause sleep drunkenness as well. [9] It is also associated with irritability: people who get angry shortly before sleeping tend to experience sleep drunkenness. [9]
According to the American Academy of Sleep Medicine, hypersomniac patients often take long naps during the day that are mostly unrefreshing. [3] Researchers found that naps are usually more frequent and longer in patients than in controls. [12] Furthermore, 75% of the patients report that short naps are not refreshing either, compared to controls. [12]
"The severity of daytime sleepiness needs to be quantified by subjective scales (at least the Epworth Sleepiness Scale) and objective tests such as the multiple sleep latency test (MSLT)." [8] The Stanford sleepiness scale (SSS) is another frequently-used subjective measurement of sleepiness. [13] After it is determined that excessive daytime sleepiness is present, a complete medical examination and full evaluation of potential disorders in the differential diagnosis (which can be tedious, expensive and time-consuming) should be undertaken. [8]
Hypersomnia can be primary (of central/brain origin), or it can be secondary to any of numerous medical conditions. More than one type of hypersomnia can coexist in a single patient. Even in the presence of a known cause of hypersomnia, the contribution of this cause to the complaint of excessive daytime sleepiness needs to be assessed. When specific treatments of the known condition do not fully suppress excessive daytime sleepiness, additional causes of hypersomnia should be sought. [14] For example, if a patient with sleep apnea is treated with CPAP (continuous positive airway pressure), which resolves their apneas but not their excessive daytime sleepiness, it is necessary to seek other causes for the excessive daytime sleepiness. Obstructive sleep apnea "occurs frequently in narcolepsy and may delay the diagnosis of narcolepsy by several years and interfere with its proper management." [15]
The true primary hypersomnias include: [8]
There are also several genetic disorders that may be associated with primary/central hypersomnia. These include the following: Prader-Willi syndrome; Norrie disease; Niemann–Pick disease, type C; and myotonic dystrophy. However, hypersomnia in these syndromes may also be associated with other secondary causes, so it is important to complete a full evaluation. Myotonic dystrophy is often associated with SOREMPs (sleep onset REM periods, such as occur in narcolepsy). [8]
There are many neurological disorders that may mimic the primary hypersomnias, narcolepsy and idiopathic hypersomnia: brain tumors; stroke-provoking lesions; clinophilia; and dysfunction in the thalamus, hypothalamus, or brainstem. Also, neurodegenerative conditions such as Alzheimer's disease, Parkinson's disease, or multiple system atrophy are frequently associated with primary hypersomnia. However, in these cases, one must still rule out other secondary causes. [8]
Early hydrocephalus can also cause severe excessive daytime sleepiness. [16] Additionally, head trauma can be associated with a primary/central hypersomnia, and symptoms similar to those of idiopathic hypersomnia can be seen within 6–18 months following the trauma. However, the associated symptoms of headaches, memory loss, and lack of concentration may be more frequent in head trauma than in idiopathic hypersomnia. "The possibility of secondary narcolepsy following head injury in previously asymptomatic individuals has also been reported." [8]
Secondary hypersomnias are extremely numerous.
Hypersomnia can be secondary to disorders such as clinical depression, multiple sclerosis, encephalitis, epilepsy, or obesity. [17] Hypersomnia can also be a symptom of other sleep disorders, like sleep apnea. [17] It may occur as an adverse effect of taking certain medications, of withdrawal from some medications, or of substance use. [17] A genetic predisposition may also be a factor. [17] In some cases it results from a physical problem, such as a tumor, head trauma, or dysfunction of the autonomic or central nervous system. [17]
Sleep apnea is the second most frequent cause of secondary hypersomnia, affecting up to 4% of middle-aged adults, mostly men. Upper airway resistance syndrome (UARS) is a clinical variant of sleep apnea that can also cause hypersomnia. [8] Just as other sleep disorders (like narcolepsy) can coexist with sleep apnea, the same is true for UARS. There are many cases of UARS in which excessive daytime sleepiness persists after CPAP treatment, indicating an additional cause, or causes, of the hypersomnia and requiring further evaluation. [14]
Sleep movement disorders, such as restless legs syndrome (RLS) and periodic limb movement disorder (PLMD or PLMS) can also cause secondary hypersomnia. Although RLS does commonly cause excessive daytime sleepiness, PLMS does not. There is no evidence that PLMS plays "a role in the etiology of daytime sleepiness. In fact, two studies showed no correlation between PLMS and objective measures of excessive daytime sleepiness. In addition, EDS in these patients is best treated with psychostimulants—and not with dopaminergic agents known to suppress PLMS." [14]
Neuromuscular diseases and spinal cord diseases often lead to sleep disturbances due to respiratory dysfunction causing sleep apnea, and they may also cause insomnia related to pain. [18] "Other sleep alterations, such as periodic limb movement disorders in patients with spinal cord disease, have also been uncovered with the widespread use of polysomnography." [18]
Primary hypersomnia in diabetes, hepatic encephalopathy, and acromegaly is rarely reported, but these medical conditions may also be associated with hypersomnia secondary to sleep apnea and periodic limb movement disorder (PLMD). [8]
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and fibromyalgia can also be associated with hypersomnia. The CDC states that people with ME/CFS experience post-exertional malaise, fatigue, and sleep problems (among other symptoms). [19] Polysomnography shows reduced sleep efficiency and may include alpha intrusion into sleep EEG. ME/CFS can be comorbid with sleep disorders such as narcolepsy, sleep apnea, PLMD, etc. [20]
As with chronic fatigue syndrome, fibromyalgia may be associated with anomalous alpha wave activity (typically associated with arousal states) during NREM sleep. [21] Also, researchers have shown that disrupting stage IV sleep consistently in young, healthy subjects causes a significant increase in muscle tenderness—similar to that experienced in "neurasthenic musculoskeletal pain syndrome". This pain resolved when the subjects were able to resume their normal sleep patterns. [22] Chronic kidney disease is commonly associated with sleep symptoms and excessive daytime sleepiness. 80% of those on dialysis have sleep disturbances. Sleep apnea can occur 10 times as often in uremic patients than in the general population and can affect up to 30-80% of patients on dialysis, though nighttime dialysis can improve this. About 50% of dialysis patients have hypersomnia, as severe kidney disease can cause uremic encephalopathy, increased sleep-inducing cytokines, and impaired sleep efficiency. About 70% of dialysis patients are affected by insomnia, and RLS and PLMD affect 30%, though these may improve after dialysis or kidney transplant. [23]
Most forms of cancer and their therapies can cause fatigue and disturbed sleep, affecting 25-99% of patients and often lasting for years after treatment completion. "Insomnia is common and a predictor of fatigue in cancer patients, and polysomnography demonstrates reduced sleep efficiency, prolonged initial sleep latency, and increased wake time during the night." Paraneoplastic syndromes can also cause insomnia, hypersomnia, and parasomnias. [23]
Autoimmune diseases, especially lupus and rheumatoid arthritis, are often associated with hypersomnia. Morvan's syndrome is an example of a rarer autoimmune illness that can also lead to hypersomnia. [23] Celiac disease is another autoimmune disease associated with poor sleep quality (which may lead to hypersomnia), "not only at diagnosis but also during treatment with a gluten-free diet." [24] There are also some case reports of central hypersomnia in celiac disease. [25] And RLS "has been shown to be frequent in celiac disease," presumably due to its associated iron deficiency. [24] [25]
Hypothyroidism and iron deficiency with or without (iron-deficiency anemia) can also cause secondary hypersomnia. Various tests for these disorders are done so they can be treated. Hypersomnia can also develop within months after viral infections such as Whipple's disease, mononucleosis, HIV, and Guillain–Barré syndrome. [8]
Behaviorally induced insufficient sleep syndrome must be considered in the differential diagnosis of secondary hypersomnia. This disorder occurs in individuals who fail to get sufficient sleep for at least three months. In this case, the patient has chronic sleep deprivation, although they may not necessarily be aware of it. This situation is becoming more prevalent in western society due to the modern demands and expectations placed upon the individual. [8]
Many medications can lead to secondary hypersomnia. Therefore, a patient's complete medication list should be carefully reviewed for sleepiness or fatigue as side effects. In these cases, careful withdrawal from the possibly offending medication(s) is needed; then, medication substitution can be undertaken. [8]
Mood disorders, like depression, anxiety disorder and bipolar disorder, can also be associated with hypersomnia. The complaint of excessive daytime sleepiness in these conditions is often associated with poor sleep at night. "In that sense, insomnia and EDS are frequently associated, especially in cases of depression." [8] Hypersomnia in mood disorders seems to be primarily related to "lack of interest and decreased energy inherent in the depressed condition rather than an increase in sleep or REM sleep propensity". In all cases with these mood disorders, the MSLT is normal (not too short and no SOREMPs). [8]
In some cases, hypersomnia can be caused by a brain injury. [26] Researchers found that the level of sleepiness is correlated with the severity of the injury. [27] Even if patients reported an improvement, sleepiness remained present for a year in about a quarter of patients with traumatic brain injury. [27]
Recurrent hypersomnias are defined by several episodes of hypersomnia persisting from a few days to weeks. [28] These episodes can occur weeks or months apart from each other. [28] There are 2 subtypes of recurrent hypersomnias: Kleine-Levin syndrome and menstrual-related hypersomnia. [29]
Kleine-Levin syndrome is characterized by the association of episodes of hypersomnias with behavioral, cognitive and mood abnormalities. [29] [30] The behavioral disturbances can be composed of hyperphagia, irritability, or sexual disinhibition. [3] The cognitive disorders consist of confusion, hallucinations or delusions. Mood symptoms are characterized by anxiety or depression. [3]
Menstrual-related hypersomnia is characterized by episodes of excessive sleepiness associated with the menstrual cycle. [3] Researchers found that the degree of premenstrual symptoms were correlated with daytime sleepiness. [31] Unlike Kleine-Levin syndrome, hyperphagia and hypersexuality are not reported in people with menstrual-related hypersomnia, but hypophagia could be present. [32] [33] Ordinarily, these episodes appear 2 weeks before menstruation. [33] A few studies have attested that some hormones as prolactin and progesterone could be responsible for Menstrual-Related Hypersomnia. [33] Therefore, different contraceptive pills could improve the symptoms. [33] The sleep architecture changes. [33] There is a decrease of slow-wave sleep and an increase of slow-Theta-wave activity. [33]
Polysomnography is an objective sleep assessment method. [34] It comprises a lot of electrodes which measure physiological variables related to sleep. [35] Polysomnography often includes electroencephalography, electromyography, electrocardiography, muscle activity and respiratory function. [35] [36]
Polysomnography is helpful to identify the very short sleep onset latency period, the very efficient sleep (more than 90%), the increased slow wave sleep, and sometimes an elevated amount of sleep spindles in idiopathic hypersomnia patients. [37]
The 'multiple sleep latency test' (MSLT) is an objective tool which indicates the degree of sleepiness by measuring the sleep latency (i.e. the speed of falling asleep). [38] [39] It also gives information regarding the presence of abnormal REM sleep onset episodes. [38] During that test, patients have a series of opportunities to sleep at 2-h intervals across the day in a darkened room and with no external alerting influences. [39] [40]
The MSLT is often administered the day after recording the polysomnography, and the mean sleep latency score is often found to be around (or less than) 8 minutes in idiopathic hypersomnia patients. [37] Some patients might even have a sleep onset latency of 5 minutes or less. These patients are often even more aware of sleeping during naps than narcolepsy patients.
Actigraphy, which operates by analyzing the patient's limb movements, is used to record the sleep and wake cycles. [41] In order to report them, the patient has to wear continuously a device on his or her wrist, which looks like a watch and does not contain any electrodes. [41] [42] [43] The advantage actigraphy shows over polysomnography is that it is possible to record for 24-hours a day for weeks. [41] Furthermore, unlike the polysomnography, it is less expensive and non-invasive. [41]
An actigraphy over several days can show longer sleep periods, which are characteristic for idiopathic hypersomnia. [44] Actigraphy is also helpful in ruling out other sleep disorders, especially circadian disorders, leading to an excess of sleepiness during the day, too.
The 'maintenance of wakefulness test' (MWT) is a test that measures the ability to stay awake. [45] It is used to diagnose disorders of excessive somnolence, such as hypersomnia, narcolepsy or obstructive sleep apnea. [45] [46] During that test, patients sit comfortably and are instructed to try to stay awake. [45]
The Stanford sleepiness scale (SSS) is a self-report scale that measures the different steps of sleepiness. [47] For each statement, patients report their level of sleepiness using a 7-point scale, going from very alert to excessively sleepy. [48] Researchers found that the SSS was highly correlated with performances to monotonous and boring tasks, which are found to be very sensitive to sleepiness. [47] These results suggest that the SSS is a good tool to assess sleepiness in patients. [47]
The 'Epworth sleepiness scale' (ESS) is also a self-reported questionnaire that measures the general level of sleepiness in a day [49] [50] The patients have to rate specific daily situations by means of a scale going from 0 (would never doze) to 3 (high chance of dozing). [51] The results found in the ESS correlate with the sleep latency indicated by the Multiple Sleep Latency Test. [49] [52]
Although there has been no cure of chronic hypersomnia, there are several treatments that may improve patients' quality of life—depending on the specific cause or causes of hypersomnia that are diagnosed. [8]
Because the causes of hypersomnia are unknown, it is only possible to treat symptoms and not directly the cause of this disorder. [53] Behavioral treatments, as well as sleep hygiene, have to be discussed with the patient and are recommended.
There are several pharmacological agents that have been prescribed to patients with hypersomnia, but few have been found to be efficient. [44] Modafinil has been found to be the most effective drug against the excessive sleepiness, and has even been shown to be helpful in children with hypersomnia. [54] The dosage is started at 100 mg per day, and then slowly increased to 400 mg per day. [55]
In general, patients with hypersomnia or excessive sleepiness should only go to bed to sleep or for sexual activity. [56] All other activities, such as eating or watching television, should be done elsewhere. [56] For those patients, it is also important to go to bed only when they feel tired, rather than trying to fall asleep for hours. [56] In that case, they probably should get out of bed and read or watch television until they get sleepy. [56]
Hypersomnia affects approximately 5% to 10% of the general population, [57] [58] "with a higher prevalence for men due to the sleep apnea syndromes". [8]
Sleep apnea is a sleep-related breathing disorder in which repetitive pauses in breathing, periods of shallow breathing, or collapse of the upper airway during sleep results in poor ventilation and sleep disruption. Each pause in breathing can last for a few seconds to a few minutes and occurs many times a night. A choking or snorting sound may occur as breathing resumes. Common symptoms include daytime sleepiness, snoring, and non restorative sleep despite adequate sleep time. Because the disorder disrupts normal sleep, those affected may experience sleepiness or feel tired during the day. It is often a chronic condition.
A sleep disorder, or somnipathy, is a medical disorder of an individual's sleep patterns. Some sleep disorders are severe enough to interfere with normal physical, mental, social and emotional functioning. Sleep disorders are frequent and can have serious consequences on patients' health and quality of life. Polysomnography and actigraphy are tests commonly ordered for diagnosing sleep disorders.
Dyssomnias are a broad classification of sleeping disorders involving difficulty getting to sleep, remaining asleep, or of excessive sleepiness.
Somnolence is a state of strong desire for sleep, or sleeping for unusually long periods. It has distinct meanings and causes. It can refer to the usual state preceding falling asleep, the condition of being in a drowsy state due to circadian rhythm disorders, or a symptom of other health problems. It can be accompanied by lethargy, weakness and lack of mental agility.
Upper airway resistance syndrome (UARS) is a sleep disorder characterized by the narrowing of the airway that can cause disruptions to sleep. The symptoms include unrefreshing sleep, fatigue, sleepiness, chronic insomnia, and difficulty concentrating. UARS can be diagnosed by polysomnograms capable of detecting Respiratory Effort-related Arousals. It can be treated with lifestyle changes, functional orthodontics, surgery, mandibular repositioning devices or CPAP therapy. UARS is considered a variant of sleep apnea, although some scientists and doctors believe it to be a distinct disorder.
A microsleep is a sudden temporary episode of sleep or drowsiness which may last for a few seconds where an individual fails to respond to some arbitrary sensory input and becomes unconscious. Episodes of microsleep occur when an individual loses and regains awareness after a brief lapse in consciousness, often without warning, or when there are sudden shifts between states of wakefulness and sleep. In behavioural terms, MSs may manifest as droopy eyes, slow eyelid-closure, and head nodding. In electrical terms, microsleeps are often classified as a shift in electroencephalography (EEG) during which 4–7 Hz activity replaces the waking 8–13 Hz background rhythm.
Polysomnography (PSG) is a multi-parameter type of sleep study and a diagnostic tool in sleep medicine. The test result is called a polysomnogram, also abbreviated PSG. The name is derived from Greek and Latin roots: the Greek πολύς, the Latin somnus ("sleep"), and the Greek γράφειν.
Periodic limb movement disorder (PLMD) is a sleep disorder where the patient moves limbs involuntarily and periodically during sleep, and has symptoms or problems related to the movement. PLMD should not be confused with restless legs syndrome (RLS), which is characterized by a voluntary response to an urge to move legs due to discomfort. PLMD on the other hand is involuntary, and the patient is often unaware of these movements altogether. Periodic limb movements (PLMs) occurring during daytime period can be found but are considered as a symptom of RLS; only PLMs during sleep can suggest a diagnosis of PLMD.
Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder and is characterized by recurrent episodes of complete or partial obstruction of the upper airway leading to reduced or absent breathing during sleep. These episodes are termed "apneas" with complete or near-complete cessation of breathing, or "hypopneas" when the reduction in breathing is partial. In either case, a fall in blood oxygen saturation, a disruption in sleep, or both, may result. A high frequency of apneas or hypopneas during sleep may interfere with the quality of sleep, which – in combination with disturbances in blood oxygenation – is thought to contribute to negative consequences to health and quality of life. The terms obstructive sleep apnea syndrome (OSAS) or obstructive sleep apnea–hypopnea syndrome (OSAHS) may be used to refer to OSA when it is associated with symptoms during the daytime.
Somnology is the scientific study of sleep. It includes clinical study and treatment of sleep disorders and irregularities. Sleep medicine is a subset of somnology.
Cataplexy is a sudden and transient episode of muscle weakness accompanied by full conscious awareness, typically triggered by emotions such as laughing, crying, or terror. Cataplexy is the first symptom to appear in about 10% of cases of narcolepsy, caused by an autoimmune destruction of hypothalamic neurons that produce the neuropeptide hypocretin, which regulates arousal and has a role in stabilization of the transition between wake and sleep states. Cataplexy without narcolepsy is rare and the cause is unknown.
The Multiple Sleep Latency Test (MSLT) is a sleep disorder diagnostic tool. It is used to measure the time elapsed from the start of a daytime nap period to the first signs of sleep, called sleep latency. The test is based on the idea that the sleepier people are, the faster they will fall asleep.
The Epworth Sleepiness Scale (ESS) is a scale intended to measure daytime sleepiness that is measured by use of a very short questionnaire. This can be helpful in diagnosing sleep disorders. It was introduced in 1991 by Dr Murray Johns of Epworth Hospital in Melbourne, Australia.
The International Classification of Sleep Disorders (ICSD) is "a primary diagnostic, epidemiological and coding resource for clinicians and researchers in the field of sleep and sleep medicine". The ICSD was produced by the American Academy of Sleep Medicine (AASM) in association with the European Sleep Research Society, the Japanese Society of Sleep Research, and the Latin American Sleep Society. The classification was developed as a revision and update of the Diagnostic Classification of Sleep and Arousal Disorders (DCSAD) that was produced by both the Association of Sleep Disorders Centers (ASDC) and the Association for the Psychophysiological Study of Sleep and was published in the journal Sleep in 1979. A second edition, called ICSD-2, was published by the AASM in 2005. The third edition, ICSD-3, was released by the AASM in 2014. A text revision of the third edition (ICSD-3-TR) was published in 2023 by the AASM.
Excessive daytime sleepiness (EDS) is characterized by persistent sleepiness and often a general lack of energy, even during the day after apparently adequate or even prolonged nighttime sleep. EDS can be considered as a broad condition encompassing several sleep disorders where increased sleep is a symptom, or as a symptom of another underlying disorder like narcolepsy, circadian rhythm sleep disorder, sleep apnea or idiopathic hypersomnia.
Sleep medicine is a medical specialty or subspecialty devoted to the diagnosis and therapy of sleep disturbances and disorders. From the middle of the 20th century, research has provided increasing knowledge of, and answered many questions about, sleep–wake functioning. The rapidly evolving field has become a recognized medical subspecialty in some countries. Dental sleep medicine also qualifies for board certification in some countries. Properly organized, minimum 12-month, postgraduate training programs are still being defined in the United States. In some countries, the sleep researchers and the physicians who treat patients may be the same people.
A sleep study is a test that records the activity of the body during sleep. There are five main types of sleep studies that use different methods to test for different sleep characteristics and disorders. These include simple sleep studies, polysomnography, multiple sleep latency tests (MSLTs), maintenance of wakefulness tests (MWTs), and home sleep tests (HSTs). In medicine, sleep studies have been useful in identifying and ruling out various sleep disorders. Sleep studies have also been valuable to psychology, in which they have provided insight into brain activity and the other physiological factors of both sleep disorders and normal sleep. This has allowed further research to be done on the relationship between sleep and behavioral and psychological factors.
Narcolepsy is a chronic neurological disorder that impairs the ability to regulate sleep–wake cycles, and specifically impacts REM sleep. The pentad symptoms of narcolepsy include excessive daytime sleepiness (EDS), sleep-related hallucinations, sleep paralysis, disturbed nocturnal sleep (DNS), and cataplexy. People with narcolepsy tend to sleep about the same number of hours per day as people without it, but the quality of sleep is typically compromised.
Idiopathic hypersomnia(IH) is a neurological disorder which is characterized primarily by excessive sleep and excessive daytime sleepiness (EDS). Idiopathic hypersomnia was first described by Bedrich Roth in 1976, and it can be divided into two forms: polysymptomatic and monosymptomatic. The condition typically becomes evident in early adulthood and most patients diagnosed with IH will have had the disorder for many years prior to their diagnosis. As of August 2021, an FDA-approved medication exists for IH called Xywav, which is an oral solution of calcium, magnesium, potassium, and sodium oxybates; in addition to several off-label treatments (primarily FDA-approved narcolepsy medications).
Classification of sleep disorders comprises systems for classifying medical disorders associated with sleep. Systems have changed, increasingly using technological discoveries to advance the understanding of sleep and recognition of sleep disorders.
{{cite book}}
: CS1 maint: multiple names: authors list (link)