Chronotype

Last updated

A chronotype is the behavioral manifestation of underlying circadian rhythm's myriad of physical processes. A person's chronotype is the propensity for the individual to sleep at a particular time during a 24-hour period. Eveningness (delayed sleep period; most active and alert in the evening) and morningness (advanced sleep period; most active and alert in the morning) are the two extremes with most individuals having some flexibility in the timing of their sleep period. However, across development there are changes in the propensity of the sleep period with pre-pubescent children preferring an advanced sleep period, adolescents preferring a delayed sleep period and many elderly preferring an advanced sleep period.

Contents

The causes and regulation of chronotypes, including developmental change, individual propensity for a specific chronotype, and flexible versus fixed chronotypes have yet to be determined. However, research is beginning to shed light on these questions, such as the relationship between age and chronotype. [1] There are candidate genes (called CLOCK genes) that exist in most cells in the body and brain, referred to as the circadian system that regulate physiological phenomena (hormone levels, metabolic function, body temperature, cognitive faculties, and sleeping). With the exception of the most extreme and rigid chronotypes, regulation is likely due to gene-environment interactions. Important environmental cues (zeitgebers) include light, feeding, social behavior, and work and school schedules. Additional research has proposed an evolutionary link between chronotype and nighttime vigilance in ancestral societies. [2]

Humans are normally diurnal creatures that are active in the daytime[ citation needed ]. As with most other diurnal animals, human activity-rest patterns are endogenously regulated by biological clocks with a circadian (~24-hour) period[ dubious ]. Chronotypes have also been investigated in other species, such as fruit flies [3] and mice. [4]

Normal variation in chronotype encompasses sleep–wake cycles that are two to three hours later in evening types than morning types. [5] Extremes outside of this range can cause a person difficulty in participating in normal work, school, and social activities. If a person's "lark" or (more commonly) "owl" tendencies are strong and intractable to the point of disallowing normal participation in society, the person is normally considered to have a circadian rhythm sleep disorder. [6]

History

Physiology professor Nathaniel Kleitman's 1939 book Sleep and Wakefulness, revised 1963, [7] summarized the existing knowledge of sleep, and it was he who proposed the existence of a basic rest-activity cycle. Kleitman, with his students including William C. Dement and Eugene Aserinsky, continued his research throughout the 1900s. O. Öquist's 1970 thesis at the Department of Psychology, University of Göteborg, Sweden, marks the beginning of modern research into chronotypes, and is entitled Kartläggning av individuella dygnsrytmer, or "Charting Individual Circadian Rhythms". [8]

Measurement

Morningness–eveningness questionnaire

Olov Östberg modified Öquist's questionnaire and in 1976, together with J.A. (Jim) Horne, he published the 19-item morningness–eveningness questionnaire, MEQ, [9] which is still used and referred to in virtually all research on this topic.

Researchers in many countries have worked on validating the MEQ with regard to their local cultures. A revision of the scoring of the MEQ as well as a component analysis was done by Jacques Taillard et al. in 2004, [10] working in France with employed people over the age of 50. Previously the MEQ had been validated only for subjects of university age.

Circadian Type Inventory

The Circadian Type Inventory, developed by Folkard (1987), is an improved version of the 20-item Circadian Type Questionnaire (CTQ).

The CTI was initially developed to identify individuals capable of adapting to shift work. Thus, the scale assesses two factors that influence a person's ability to alter his or her sleeping rhythms: rigidity/flexibility of sleeping habits and ability/inability to overcome drowsiness. Since its creation, the scale has undergone a number of revisions to improve its psychometric properties. An 18-item version was used as part of the larger Standard Shiftwork Index (SSI) in a study conducted by Barton and colleagues. This shorter scale was then reduced and altered to make an 11 item scale by De Milia et al. [11]

Composite Scale of Morningness

Smith et al. (1989) [12] analyzed items from MEQ, Diurnal Type Scale (DTS), [13] and CTQ and chose the best ones to develop an improved instrument, the 13-item Composite Scale of Morningness (CSM or CS). CSM consists of 9 items from the MEQ and 4 items from the Diurnal Type Scale and is regarded[ by whom? ] as an improved version of MEQ. It currently exists in 14 language versions[ citation needed ]; the most recently developed are Polish, [14] Russian [15] and Hindi. [16]

Others

Roberts, in 1999, designed the Lark-Owl Chronotype Indicator, LOCI. [17] Till Roenneberg's Munich Chronotype Questionnaire (MCTQ) from 2003 uses a quantitative approach; his many thousands of subjects have answered questions about their sleep behavior. [18] [19]

Characteristics

Most people are neither evening nor morning types but lie somewhere in between. Estimates vary, but a 2007 survey of over 55,000 people by Roenneberg et al. showed that morningness–eveningness tends to follow a normal distribution. [18] People who share a chronotype, morningness or eveningness, have similar activity-pattern timing: sleep, appetite, exercise, study etc. Researchers in the field of chronobiology look for objective markers by which to measure the chronotype spectrum. Paine et al. [20] conclude that "morningness/eveningness preference is largely independent of ethnicity, gender, and socioeconomic position, indicating that it is a stable characteristic that may be better explained by endogenous factors".

Sleep

Horne and Östberg found that morning types had a higher daytime temperature with an earlier peak time than evening types and that they went to sleep and awoke earlier, but no differences in sleep lengths were found. They also note that age should be considered in assessments of morningness and eveningness, noting how a "bed time of 23:30 may be indicative of a morning type within a student population, but might be more related to an evening type in the 40–60 years age group". [9] :109 Clodoré et al. found differences in alertness between morning and evening types after a two-hour sleep reduction. [21] Duffy et al. investigated "changes in the phase relationship between endogenous circadian rhythms and the sleep-wake cycle", and found that although evening types woke at a later clock hour than morning types, morning types woke at a later circadian phase. [22] Zavada et al. show that the exact hour of mid-sleep on free (non-work) days may be the best marker for sleep-based assessments of chronotype; it correlates well with such physiological markers as dim-light melatonin onset (DLMO) and the minimum of the daily cortisol rhythm. [23] They also state that each chronotype category "contains a similar portion of short and long sleepers". Chung et al. studied sleep quality in shift-working nurses and found that "the strongest predictor of sleep quality was morningness–eveningness, not the shift schedule or shift pattern", as "evening types working on changing shifts had higher risk of poor sleep quality compared to morning types". [24]

Diurnal rhythms

Gibertini et al. [25] assessed blood levels of the hormone melatonin, finding that the melatonin acrophase (the time at which the peak of a rhythm occurs [26] ) was strongly related to circadian type, whereas amplitude was not. They note that morning types evidence a more rapid decline in melatonin levels after the peak than do evening types. Baehr et al. [27] found that, in young adults, the daily body temperature minimum occurred at about 4 a.m. for morning types but at about 6 a.m. for evening types. This minimum occurred at approximately the middle of the eight-hour sleep period for morning types, but closer to waking in evening types. Evening types had a lower nocturnal temperature. The temperature minimum occurred about a half-hour earlier in women than in men. Similar results were found by Mongrain et al. in Canada, 2004. [28] Morning types had lower pain sensitivity throughout a day than evening types, but the two chronotype groups did not differ in the shape of diurnal variations in pain. [29] There are some differences between chronotypes in sexual activity, with evening chronotypes preferring later hours for sex as compared to other chronotypes. [30]

Personality

Chronotypes differ in many aspects of personality, such as grit, [31] but also in intellectual domains, like creative thinking. [32] Experimental studies on discomfort glare perception and chronotype have shown that early chronotypes can tolerate more discomfort glare in the morning compared to late chronotypes. [33]

Intelligence

A meta-analysis found a small positive association between an evening chronotype and intelligence; [34] similar results were subsequently found in a large sample using a standardized battery. [35]

Genetic variants associated with chronotype

Studies show [lower-alpha 1] that there are 22 genetic variants associated with chronotype. These variants occur near genes known to be important in photoreception and circadian rhythms. [37] The variant most strongly associated with chronotype occurs near RGS16, which is a regulator of G-protein signalling and has a known role in circadian rhythms. In mice, gene ablation of Rgs16 lengthens the circadian period of behavioural rhythm. By temporally regulating cAMP signalling, Rgs16 has been shown to be a key factor in synchronising intercellular communication between pacemaker neurons in the suprachiasmatic nucleus (SCN), the centre for circadian rhythm control in humans. [37] [38]

PER2 is a well-known regulator of circadian rhythms and contains a variant recently shown to be associated with iris formation. This suggests a link between iris function and chronotype. Per2 knockout mice show arrhythmic locomotor activity. [37] [39] [40] The gene ASB1, associated with eveningness and a tendency to day-napping is a result of interbreeding between archaic and modern humans and is originally a Neanderthal trait, possibly linked to a more crepuscular lifestyle in this species. [41]

Therefore, the chronotype is genetically heritable. [42]

Chronotype and disease

Disrupted circadian rhythms are associated with several human diseases, for example, chronotype is genetically correlated with BMI (body mass index). [37] [43] [44] However, cause-and-effect is not yet determined. [37]

Notes

  1. For example, see Kalmbach, et al. for discussion of three landmark genome-wide association studies [36]

Related Research Articles

<span class="mw-page-title-main">Jet lag</span> Physiological condition caused by travel across time zones

Jet lag is a temporary physiological condition that occurs when one's body's circadian rhythms is out of sync with the time zone that they are in, and is a typical result from doing rapid long-distance travel across multiple time zones. For example, someone flying from New York to London, i.e. from west to east, feels as if the time were five hours earlier than local time, and someone travelling from London to New York, i.e. from east to west, feels as if the time were five hours later than local time. The phase shift when traveling from east to west is referred to as phase-delay of the circadian circle, whereas going west to east is phase-advance of the circadian circle. Most travelers find that it is harder to time zone adjust when traveling to the east. Jet lag was previously classified as one of the circadian rhythm sleep disorders.

<span class="mw-page-title-main">Circadian rhythm</span> Natural internal process that regulates the sleep-wake cycle

A circadian rhythm, or circadian cycle, is a natural oscillation that repeats roughly every 24 hours. Circadian rhythms can refer to any process that originates within an organism and responds to the environment. Circadian rhythms are regulated by a circadian clock whose primary function is to rhythmically co-ordinate biological processes so they occur at the correct time to maximise the fitness of an individual. Circadian rhythms have been widely observed in animals, plants, fungi and cyanobacteria and there is evidence that they evolved independently in each of these kingdoms of life.

<span class="mw-page-title-main">Chronobiology</span> Field of biology

Chronobiology is a field of biology that examines timing processes, including periodic (cyclic) phenomena in living organisms, such as their adaptation to solar- and lunar-related rhythms. These cycles are known as biological rhythms. Chronobiology comes from the ancient Greek χρόνος, and biology, which pertains to the study, or science, of life. The related terms chronomics and chronome have been used in some cases to describe either the molecular mechanisms involved in chronobiological phenomena or the more quantitative aspects of chronobiology, particularly where comparison of cycles between organisms is required.

<span class="mw-page-title-main">Delayed sleep phase disorder</span> Chronic mismatch between a persons normal daily rhythm, compared to other people and societal norms

Delayed sleep phase disorder (DSPD), more often known as delayed sleep phase syndrome and also as delayed sleep–wake phase disorder, is the delaying of a person's circadian rhythm compared to those of societal norms. The disorder affects the timing of biological rhythms including sleep, peak period of alertness, core body temperature, and hormonal cycles.

Advanced Sleep Phase Disorder (ASPD), also known as the advanced sleep-phase type (ASPT) of circadian rhythm sleep disorder, is a condition that is characterized by a recurrent pattern of early evening sleepiness and very early morning awakening. This sleep phase advancement can interfere with daily social and work schedules, and results in shortened sleep duration and excessive daytime sleepiness. The timing of sleep and melatonin levels are regulated by the body's central circadian clock, which is located in the suprachiasmatic nucleus in the hypothalamus.

Non-24-hour sleep–wake disorder is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising [...] daily delays in sleep onset and wake times in an individual living in a society". Symptoms result when the non-entrained (free-running) endogenous circadian rhythm drifts out of alignment with the light–dark cycle in nature. Although this sleep disorder is more common in blind people, affecting up to 70% of the totally blind, it can also affect sighted people. Non-24 may also be comorbid with bipolar disorder, depression, and traumatic brain injury. The American Academy of Sleep Medicine (AASM) has provided CRSD guidelines since 2007 with the latest update released in 2015.

A phase response curve (PRC) illustrates the transient change in the cycle period of an oscillation induced by a perturbation as a function of the phase at which it is received. PRCs are used in various fields; examples of biological oscillations are the heartbeat, circadian rhythms, and the regular, repetitive firing observed in some neurons in the absence of noise.

A zeitgeber is any external or environmental cue that entrains or synchronizes an organism's biological rhythms, usually naturally occurring and serving to entrain to the Earth's 24-hour light/dark and 12-month cycles.

<span class="mw-page-title-main">Night owl</span> Person who tends to stay awake at night

A night owl, evening person or simply owl, is a person who tends or prefers to be active late at night and into the early morning, and to sleep and wake up later than is considered normal; night owls often work or engage in recreational activities late into the night, and sleep until relatively late in the day.

Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day. These occurrences often lead to recurring instances of disturbed rest, where individuals affected by the disorder are unable to go to sleep and awaken at "normal" times for work, school, and other social obligations. Delayed sleep phase disorder, advanced sleep phase disorder, non-24-hour sleep–wake disorder and irregular sleep–wake rhythm disorder represents the four main types of CRSD.

Light effects on circadian rhythm are the effects that light has on circadian rhythm.

<span class="mw-page-title-main">Lark (person)</span> Person who usually gets up early in the morning and goes to bed early in the evening

A lark, early bird, morning person, or an A-person, is a person who usually gets up early in the morning and goes to bed early in the evening. The term relates to the birds known as larks, which are known to sing before dawn. Human "larks" may sleep from around 10 p.m. to 6 a.m., and tend to feel most energetic just after they get up in the morning. They are thus well-suited for working the day shift.

The morningness–eveningness questionnaire (MEQ) is a self-assessment questionnaire developed by researchers James A. Horne and Olov Östberg in 1976. Its main purpose is to measure whether a person's circadian rhythm produces peak alertness in the morning, in the evening, or in between. The original study showed that the subjective time of peak alertness correlates with the time of peak body temperature; morning types have an earlier temperature peak than evening types, with intermediate types having temperature peaks between the morning and evening chronotype groups. The MEQ is widely used in psychological and medical research and has been professionally cited more than 4,000 times.

Till Roenneberg is a professor of chronobiology at the Institute of Medical Psychology at Ludwig-Maximilian University (LMU) in Munich, Germany. Roenneberg, in collaboration with Martha Merrow, explores the impact of light on human circadian rhythms, focusing on aspects such as chronotypes and social jet lag in relation to health benefits.

Martha Merrow is an American chronobiologist. She currently chairs the Institute of Medical Psychology at the Ludwig Maximilian University of Munich. Her career focuses primarily on investigating the molecular and genetic mechanisms of the circadian clock. Since joining the Ludwig Maximilian University in 1996, Merrow has investigated molecular and genetic mechanisms of the circadian clock as well as daily human behavior and medical psychology.

Adolescent sleep is typically poor in duration and quality. Sleep duration and quality reduce to suboptimal levels, and sleep duration variability and latency increases during adolescence. Sleep recommendations suggest that adolescents should obtain 8–10 hours of sleep per night. Additionally, there is a shift in the body's circadian rhythm such that sleep and wake timings become later during adolescence. Technology, social factors, and physical development are thought to contribute to poor sleep during this time. Poor sleep duration and quality in adolescents has been linked with altered brain functioning and development, poor mental and physical health, as well as higher rates of disease and mortality. The concerns surrounding poor sleep during adolescence has garnered significant public attention, especially concerning policies related to school start times. Many evidences suggest that sleep contributes positively to attention, behavior, and academic achievement for adolescents.

Familial sleep traits are heritable variations in sleep patterns, resulting in abnormal sleep-wake times and/or abnormal sleep length.

Dr. Debra J. Skene is a chronobiologist with specific interest in the mammalian circadian rhythm and the consequences of disturbing the circadian system. She is also interested in finding their potential treatments for people who suffer from circadian misalignment. Skene and her team of researchers tackle these questions using animal models, clinical trials, and most recently, liquid chromatography-mass spectrometry. Most notably, Skene is credited for her evidence of a novel photopigment in humans, later discovered to be melanopsin. She was also involved in discovering links between human PER3 genotype and an extremely shifted sleep schedules categorized as extreme diurnal preference. Skene received her Bachelor of Pharmacy, Master of Science, and Ph.D. in South Africa.

Anne-Marie Chang is a researcher in the fields of sleep and circadian rhythms and is currently an Assistant Professor of Bio-behavioral Health at Pennsylvania State University. She earned her Ph.D. in neuroscience from Northwestern University in 2003.

Chronodisruption is a concept in the field of circadian biology that refers to the disturbance or alteration of the body's natural biological rhythms, particularly the sleep-wake cycle, due to various environmental factors. The human body is synchronized to a 24-hour light-dark cycle, which is essential for maintaining optimal health and well-being. However, modern lifestyles, which involve exposure to artificial light, irregular sleep schedules, and shift work, can disrupt this natural rhythm, leading to a range of adverse physiological outcomes. Chronodisruption has been linked to a variety of health issues, including neurodegenerative diseases, diabetes, mood disorders, and cancer. Such disruptors can lead to dysregulation of hormones and neurotransmitters, though research continues to fully understand the physiological implications of chronodisruption. Indeed, research in chronobiology is rapidly advancing, with an increasing focus on understanding the underlying mechanisms of chronodisruption and developing strategies to prevent or mitigate its adverse effects. This includes the development of pharmacological interventions, as well as lifestyle modifications such as optimizing one's sleeping environment and timing of meals and physical activity.

References

  1. Walker RJ, Kribs ZD, Christopher AN, Shewach OR, Wieth MB (2014). "Age, the Big Five, and time-of-day preference: A mediational model". Personality and Individual Differences. 56: 170–174. doi:10.1016/j.paid.2013.09.003. S2CID   18325145.
  2. Samson DR, Crittenden AN, Mabulla IA, Mabulla AZ, Nunn CL (July 2017). "Chronotype variation drives night-time sentinel-like behaviour in hunter-gatherers". Proceedings. Biological Sciences. 284 (1858): 20170967. doi:10.1098/rspb.2017.0967. PMC   5524507 . PMID   28701566.
  3. Zakharenko LP, Petrovskii DV, Putilov AA (21 June 2018). "Larks, owls, swifts, and woodcocks among fruit flies: differential responses of four heritable chronotypes to long and hot summer days". Nature and Science of Sleep. 10: 181–191. doi: 10.2147/NSS.S168905 . PMC   6016586 . PMID   29950910.
  4. Refinetti R, Wassmer T, Basu P, Cherukalady R, Pandey VK, Singaravel M, et al. (July 2016). "Variability of behavioral chronotypes of 16 mammalian species under controlled conditions". Physiology & Behavior. 161: 53–59. doi: 10.1016/j.physbeh.2016.04.019 . PMID   27090227.
  5. Lack L, Bailey M, Lovato N, Wright H (2009). "Chronotype differences in circadian rhythms of temperature, melatonin, and sleepiness as measured in a modified constant routine protocol". Nature and Science of Sleep. 1: 1–8. doi: 10.2147/nss.s6234 . PMC   3630920 . PMID   23616692.
  6. The international classification of sleep disorders (PDF) (revised: diagnostic and coding manual ed.). Rochester, MN: American Sleep Disorders Association. 2001. ISBN   0-9657220-1-5. Archived from the original (PDF) on 27 September 2007.
  7. Kleitman N (1963) [1939]. Sleep and Wakefulness. The University of Chicago Press.
  8. Öquist O (1970). Kartläggning av individuella dygnsrytmer[Charting Individual Circadian Rhythms] (PhD thesis) (in Swedish). Göteborgs Universitet, Psykologiska Institutionen.
  9. 1 2 Horne JA, Ostberg O (1976). "A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms". International Journal of Chronobiology. 4 (2): 97–110. PMID   1027738.
  10. Taillard J, Philip P, Chastang JF, Bioulac B (February 2004). "Validation of Horne and Ostberg morningness-eveningness questionnaire in a middle-aged population of French workers". Journal of Biological Rhythms. 19 (1): 76–86. doi:10.1177/0748730403259849. PMID   14964706. S2CID   23248143.
  11. Shahid A, Wilkinson K, Marcu S, Shapiro CM (2011). "Circadian Type Inventory (CTI).". In Shahid A, Wilkinson K, Marcu S, Shapiro CM (eds.). STOP, THAT and One Hundred Other Sleep Scales. New York, NY: Springer. pp. 123–126. doi:10.1007/978-1-4419-9893-4_22. ISBN   978-1-4419-9893-4.
  12. Smith, Carlla S.; Reilly, Christopher; Midkiff, Karen (1989). "Evaluation of three circadian rhythm questionnaires with suggestions for an improved measure of morningness". Journal of Applied Psychology. 74 (5): 728–738. doi:10.1037/0021-9010.74.5.728. PMID   2793773.
  13. Torsvall, Lars; Åkerstedt, Torbjörn (1980). "A diurnal type scale: construction, consistency and validation in shift work". Scandinavian Journal of Work, Environment & Health. 6 (4): 283–290. doi: 10.5271/sjweh.2608 . ISSN   0355-3140. PMID   7195066.
  14. Jankowski KS (January 2015). "Composite Scale of Morningness: psychometric properties, validity with Munich ChronoType Questionnaire and age/sex differences in Poland". European Psychiatry. 30 (1): 166–71. doi:10.1016/j.eurpsy.2014.01.004. PMID   24630377. S2CID   22020964.
  15. Kolomeichuk S (2015). "Psychometric properties of the Russian version of the Composite Scale of Morningness". Biological Rhythm Research. 45 (6): 725–737. doi:10.1080/09291016.2015.1048963. S2CID   218602418.
  16. Bhatia T, Agrawal A, Beniwal RP, Thomas P, Monk TH, Nimgaonkar VL, Deshpande SN (December 2013). "A Hindi version of the Composite Scale of Morningness". Asian Journal of Psychiatry. 6 (6): 581–4. doi:10.1016/j.ajp.2013.09.001. PMC   4026194 . PMID   24309877.
  17. Roberts RD (1999). "Construction and validation of the Lark-Owl (Chronotype) Indicator (LOCI): status report". University of Sydney. Archived from the original on 26 March 2012. Retrieved 21 June 2018.
  18. 1 2 Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (December 2007). "Epidemiology of the human circadian clock" (PDF). Sleep Medicine Reviews. 11 (6): 429–38. doi:10.1016/j.smrv.2007.07.005. hdl: 11370/65d6f03a-88cd-405c-a067-4afbc1b9ba9d . PMID   17936039. S2CID   11628329.
  19. Allebrandt KV, Roenneberg T (August 2008). "The search for circadian clock components in humans: new perspectives for association studies". Brazilian Journal of Medical and Biological Research. 41 (8): 716–21. doi: 10.1590/S0100-879X2008000800013 . PMID   18797707.
  20. Paine SJ, Gander PH, Travier N (February 2006). "The epidemiology of morningness/eveningness: influence of age, gender, ethnicity, and socioeconomic factors in adults (30-49 years)". Journal of Biological Rhythms. 21 (1): 68–76. doi:10.1177/0748730405283154. PMID   16461986. S2CID   20885196.
  21. Clodoré M, Foret J, Benoit O (1986). "Diurnal variation in subjective and objective measures of sleepiness: the effects of sleep reduction and circadian type". Chronobiology International. 3 (4): 255–63. doi:10.3109/07420528609079543. PMID   3677208.
  22. Duffy JF, Dijk DJ, Hall EF, Czeisler CA (March 1999). "Relationship of endogenous circadian melatonin and temperature rhythms to self-reported preference for morning or evening activity in young and older people". Journal of Investigative Medicine. 47 (3): 141–50. PMC   8530273 . PMID   10198570.
  23. Zavada A, Gordijn MC, Beersma DG, Daan S, Roenneberg T (2005). "Comparison of the Munich Chronotype Questionnaire with the Horne-Ostberg's Morningness-Eveningness Score" (PDF). Chronobiology International. 22 (2): 267–78. doi:10.1081/CBI-200053536. hdl: 11370/4baad537-bed0-4161-8729-b5da5b22808d . PMID   16021843. S2CID   17928135. Archived from the original (PDF) on 17 December 2008. Retrieved 2 November 2007.
  24. Chung MH, Chang FM, Yang CC, Kuo TB, Hsu N (January 2009). "Sleep quality and morningness-eveningness of shift nurses". Journal of Clinical Nursing. 18 (2): 279–84. doi:10.1111/j.1365-2702.2007.02160.x. PMID   19120754.
  25. Gibertini M, Graham C, Cook MR (May 1999). "Self-report of circadian type reflects the phase of the melatonin rhythm". Biological Psychology. 50 (1): 19–33. doi:10.1016/S0301-0511(98)00049-0. PMID   10378437. S2CID   12654232.
  26. "Dictionary of Circadian Physiology". Circadian Rhythm Laboratory, University of South Carolina Salkehatchie, Walterboro campus.
  27. Baehr EK, Revelle W, Eastman CI (June 2000). "Individual differences in the phase and amplitude of the human circadian temperature rhythm: with an emphasis on morningness-eveningness". Journal of Sleep Research. 9 (2): 117–27. doi:10.1046/j.1365-2869.2000.00196.x. PMID   10849238. S2CID   6104127.
  28. Mongrain V, Lavoie S, Selmaoui B, Paquet J, Dumont M (June 2004). "Phase relationships between sleep-wake cycle and underlying circadian rhythms in Morningness-Eveningness". Journal of Biological Rhythms. 19 (3): 248–57. doi:10.1177/0748730404264365. PMID   15155011. S2CID   41561035.
  29. Jankowski KS (August 2013). "Morning types are less sensitive to pain than evening types all day long". European Journal of Pain. 17 (7): 1068–73. doi:10.1002/j.1532-2149.2012.00274.x. PMID   23322641. S2CID   7308674.
  30. Jankowski KS, Díaz-Morales JF, Randler C (October 2014). "Chronotype, gender, and time for sex" (PDF). Chronobiology International. 31 (8): 911–6. doi:10.3109/07420528.2014.925470. PMID   24927370. S2CID   207469411.
  31. Allee MF, Anderson SE, Bloom MJ, Jost SR, Keating III DP, Lang AS, et al. (2020). "The Influence of Chronotype and Grit on Lifestyle and Physical Activity". Building Healthy Academic Communities Journal. 4 (2): 57–70. doi: 10.18061/bhac.v4i2.7617 . ISSN   2573-7643.
  32. Giampietro M, Cavallera GM (2006). "Morning and evening types and creative thinking". Elsevier Ltd. Archived from the original on 28 July 2009. Retrieved 2 November 2007.
  33. Kent MG, Altomonte S, Wilson R, Tregenza PR (2016). "Temporal variables and personal factors in glare sensation". Lighting Research and Technology. 48 (6): 689–710. doi:10.1177/1477153515578310. S2CID   56096900.
  34. Preckel F, Lipnevich AA, Schneider S, Roberts RD (October 2011). "Chronotype, cognitive abilities, and academic achievement: A meta-analytic investigation". Learning and Individual Differences. 21 (5): 483–492. doi:10.1016/j.lindif.2011.07.003.
  35. Kyle SD, Sexton CE, Feige B, Luik AI, Lane J, Saxena R, et al. (October 2017). "Sleep and cognitive performance: cross-sectional associations in the UK Biobank". Sleep Medicine. 38: 85–91. doi:10.1016/j.sleep.2017.07.001. PMC   5930168 . PMID   29031762.
  36. Kalmbach DA, Schneider LD, Cheung J, Bertrand SJ, Kariharan T, Pack AI, Gehrman PR (February 2017). "Genetic Basis of Chronotype in Humans: Insights From Three Landmark GWAS". Sleep. 40 (2). doi:10.1093/sleep/zsw048. PMC   6084759 . PMID   28364486.
  37. 1 2 3 4 5 Jones SE, Tyrrell J, Wood AR, Beaumont RN, Ruth KS, Tuke MA, et al. (August 2016). "Genome-Wide Association Analyses in 128,266 Individuals Identifies New Morningness and Sleep Duration Loci". PLOS Genetics. 12 (8): e1006125. doi: 10.1371/journal.pgen.1006125 . PMC   4975467 . PMID   27494321.
  38. Doi M, Ishida A, Miyake A, Sato M, Komatsu R, Yamazaki F, et al. (1 January 2011). "Circadian regulation of intracellular G-protein signalling mediates intercellular synchrony and rhythmicity in the suprachiasmatic nucleus". Nature Communications. 2: 327. Bibcode:2011NatCo...2..327D. doi: 10.1038/ncomms1316 . PMC   3112533 . PMID   21610730.
  39. Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (July 2002). "The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator". Cell. 110 (2): 251–60. doi: 10.1016/S0092-8674(02)00825-5 . PMID   12150932.
  40. Larsson M, Duffy DL, Zhu G, Liu JZ, Macgregor S, McRae AF, et al. (August 2011). "GWAS findings for human iris patterns: associations with variants in genes that influence normal neuronal pattern development". American Journal of Human Genetics. 89 (2): 334–43. doi: 10.1016/j.ajhg.2011.07.011 . PMC   3155193 . PMID   21835309.
  41. Dannemann M, Kelso J (October 2017). "The Contribution of Neanderthals to Phenotypic Variation in Modern Humans". American Journal of Human Genetics. 101 (4): 578–589. doi: 10.1016/j.ajhg.2017.09.010 . PMC   5630192 . PMID   28985494.
  42. von Schantz M, Taporoski TP, Horimoto AR, Duarte NE, Vallada H, Krieger JE, et al. (March 2015). "Distribution and heritability of diurnal preference (chronotype) in a rural Brazilian family-based cohort, the Baependi study". Scientific Reports. 5: 9214. Bibcode:2015NatSR...5E9214V. doi: 10.1038/srep09214 . PMC   4363835 . PMID   25782397.
  43. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. (November 2007). "High-fat diet disrupts behavioral and molecular circadian rhythms in mice". Cell Metabolism. 6 (5): 414–21. doi: 10.1016/j.cmet.2007.09.006 . PMID   17983587.
  44. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. (May 2005). "Obesity and metabolic syndrome in circadian Clock mutant mice". Science. 308 (5724): 1043–5. Bibcode:2005Sci...308.1043T. doi:10.1126/science.1108750. PMC   3764501 . PMID   15845877.

Further reading