This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages) |
When we sleep, our breathing changes due to normal biological processes that affect both our respiratory and muscular systems.
Breathing changes as we transition from wakefulness to sleep. These changes arise due to biological changes in the processes that regulate our breathing. When we fall asleep, minute ventilation (the amount of air that we breathe per minute) reduces due to decreased metabolism.
During NREM sleep, we move through three sleep stages, with each progressively deeper than the last. As our sleep deepens, our minute ventilation continues to decrease, reducing by 13% in the second NREM stage and by 15% in the third. For example, a study of 19 healthy adults revealed that the minute ventilation in NREM sleep was 7.18 liters/minute compared to 7.66 liters/minute when awake. [1]
Rib cage contribution to ventilation increases during NREM sleep, mostly by lateral movement, and is detected by an increase in EMG amplitude during breathing. Diaphragm activity is little increased or unchanged and abdominal muscle activity is slightly increased during these sleep stages.
Airway resistance increases by about 230% during NREM sleep. Elastic and flow resistive properties of the lung do not change during NREM sleep. The increase in resistance comes primarily from the upper airway in the retro-epiglottic region. Tonic activity of the pharyngeal dilator muscles of the upper airway decreases during the NREM sleep, contributing to the increased resistance, which is reflected in increased esophageal pressure swings during sleep. The other ventilatory muscles compensate for the increased resistance, and so the airflow decreases much less than the increase in resistance.
The Arterial blood gasses pCO2 increases by 3-7mmHg, pO2 drops by 3-9mmHg and SaO2 drops by 2% or less. These changes occur despite a reduced metabolic rate, reflected by a 10-20% decrease in O2 consumption, suggesting overall hypoventilation instead of decreased production/metabolism.
Periodic oscillations of the pulmonary arterial pressure occur with respiration. Pulmonary arterial systolic and diastolic pressure and PAD increase by 4-5mm in NREM sleep
Induced transient arousal from NREM sleep cause the following: Increase EMG activity of the diaphragm 150%, increased activity of upper airway dilating muscles 250%, increased airflow and tidal volume 160% and decreased upper airway resistance.
Irregular breathing with sudden changes in both amplitude and frequency at times interrupted by central apneas lasting 10–30 seconds are noted in Rapid Eye Movement (REM) sleep. (These are physiologic changes and are different from abnormal breathing patterns noted in sleep disordered breathing). These breathing irregularities are not random, but correspond to bursts of eye movements. This breathing pattern is not controlled by the chemoreceptors, but is due to the activation of behavioral respiratory control system by REM sleep processes. Quantitative measure of airflow is quite variable in this sleep stage and has been shown to be increased, decreased or unchanged. Tidal volume has also been shown to be increased, decreased or unchanged by quantitative measures in REM sleep. So breathing during REM sleep is somewhat discordant.
In a study of 19 healthy adults, the minute ventilation in REM sleep was 6.46 +/- 0.29(SEM) liters/minute compared to 7.66 +/- 0.34 liters/minute when awake. [1]
Intercostal muscle activity decreases in REM sleep and contribution of rib cage to respiration decreases during REM sleep. This is due to REM related supraspinal inhibition of alpha motoneuron drive and specific depression of fusimotor function. Diaphraghmatic activity correspondingly increases during REM sleep. Although paradoxical thoracoabdominal movements are not observed, the thoracic and abdominal displacements are not exactly in phase. This decrease in intercostal muscle activity is primarily responsible for hypoventilation that occurs in patients with borderline pulmonary function.
Upper airway resistance is expected to be highest during REM sleep because of atonia of the pharyngeal dilator muscles and partial airway collapse. Many studies have shown this, but not all. Some have shown unchanged airway resistance during REM sleep, others have shown it to increase to NREM levels.
Hypoxemia due to hypoventilation is noted in REM sleep but this is less well studied than NREM sleep. These changes are equal to or greater than NREM sleep
Pulmonary arterial pressure fluctuates with respiration and rises during REM sleep.
Arousals cause return of airway resistance and airflow to near awake values. Refer arousals in NREM sleep.
At a lower altitude, the link between breathing and sleep has been established. At a higher altitude, disruptions in sleep are often linked to changes in the respiratory (breathing ) rhythm. Changes in altitude cause variations in sleep time (reduced to 0% up to 93%), as shown in a study that examined people at sea level and Pikes Peak (4300 meters). [2] These subjects also experienced more frequent arousals and diminished stage 3 and stage 4 sleep. A poorer quality of sleep was indicated, but not due to less sleep time, but more frequent awakenings during the night.
Snoring is a condition characterized by noisy breathing during sleep. Usually, any medical condition where the airway is blocked during sleeping, like obstructive sleep apnea, may give rise to snoring. Snoring, when not associated with an obstructive phenomenon is known as primary snoring. [3] Apart from the specific condition of obstructive sleep apnea, other causes of snoring include alcohol intake prior to sleeping, stuffy nose, sinusitis, obesity, long tongue or uvula, large tonsil or adenoid, smaller lower jaw, deviated nasal septum, asthma, smoking and sleeping on one's back. Primary snoring is also known as "simple" or "benign" snoring, and is not associated with sleep apnea.
This section needs expansion. You can help by adding to it. (December 2010) |
Obstructive sleep apnea is apnea either as the result of obstruction of the air passages or inadequate respiratory muscle activity.
Sleep apnea (or sleep apnoea in British English; /æpˈniːə/) is a sleep disorder characterized by pauses in breathing or instances of shallow or infrequent breathing during sleep. Each pause in breathing, called an apnea, can last for several seconds to several minutes, and may occur 5 to 30 times or more in an hour. [4]
This section is empty. You can help by adding to it. (December 2010) |
This section is empty. You can help by adding to it. (December 2010) |
Sleep apnea is a sleep-related breathing disorder in which repetitive pauses in breathing, periods of shallow breathing, or collapse of the upper airway during sleep results in poor ventilation and sleep disruption. Each pause in breathing can last for a few seconds to a few minutes and occurs many times a night. A choking or snorting sound may occur as breathing resumes. Common symptoms include daytime sleepiness, snoring, and non restorative sleep despite adequate sleep time. Because the disorder disrupts normal sleep, those affected may experience sleepiness or feel tired during the day. It is often a chronic condition.
Snoring is the vibration of respiratory structures and the resulting sound due to obstructed air movement during breathing while sleeping. The sound may be soft or loud and unpleasant. Snoring during sleep may be a sign, or first alarm, of obstructive sleep apnea (OSA). Research suggests that snoring is one of the factors of sleep deprivation.
Obesity hypoventilation syndrome (OHS) is a condition in which severely overweight people fail to breathe rapidly or deeply enough, resulting in low oxygen levels and high blood carbon dioxide (CO2) levels. The syndrome is often associated with obstructive sleep apnea (OSA), which causes periods of absent or reduced breathing in sleep, resulting in many partial awakenings during the night and sleepiness during the day. The disease puts strain on the heart, which may lead to heart failure and leg swelling.
Positive airway pressure (PAP) is a mode of respiratory ventilation used in the treatment of sleep apnea. PAP ventilation is also commonly used for those who are critically ill in hospital with respiratory failure, in newborn infants (neonates), and for the prevention and treatment of atelectasis in patients with difficulty taking deep breaths. In these patients, PAP ventilation can prevent the need for tracheal intubation, or allow earlier extubation. Sometimes patients with neuromuscular diseases use this variety of ventilation as well. CPAP is an acronym for "continuous positive airway pressure", which was developed by Dr. George Gregory and colleagues in the neonatal intensive care unit at the University of California, San Francisco. A variation of the PAP system was developed by Professor Colin Sullivan at Royal Prince Alfred Hospital in Sydney, Australia, in 1981.
Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".
The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration.
Respiratory arrest is a serious medical condition caused by apnea or respiratory dysfunction severe enough that it will not sustain the body. Prolonged apnea refers to a patient who has stopped breathing for a long period of time. If the heart muscle contraction is intact, the condition is known as respiratory arrest. An abrupt stop of pulmonary gas exchange lasting for more than five minutes may permanently damage vital organs, especially the brain. Lack of oxygen to the brain causes loss of consciousness. Brain injury is likely if respiratory arrest goes untreated for more than three minutes, and death is almost certain if more than five minutes.
Upper airway resistance syndrome (UARS) is a sleep disorder characterized by the narrowing of the airway that can cause disruptions to sleep. The symptoms include unrefreshing sleep, fatigue, sleepiness, chronic insomnia, and difficulty concentrating. UARS can be diagnosed by polysomnograms capable of detecting Respiratory Effort-related Arousals. It can be treated with lifestyle changes, functional orthodontics, surgery, mandibular repositioning devices or CPAP therapy. UARS is considered a variant of sleep apnea, although some scientists and doctors believe it to be a distinct disorder.
Sexsomnia, also known as sleep sex, is a distinct form of parasomnia, or an abnormal activity that occurs while an individual is asleep. Sexsomnia is characterized by an individual engaging in sexual acts while in non-rapid eye movement (NREM) sleep. Sexual behaviors that result from sexsomnia are not to be mistaken with normal nocturnal sexual behaviors, which do not occur during NREM sleep. Sexual behaviors that are viewed as normal during sleep and are accompanied by extensive research and documentation include nocturnal emissions, nocturnal erections, and sleep orgasms.
Polysomnography (PSG) is a multi-parameter type of sleep study and a diagnostic tool in sleep medicine. The test result is called a polysomnogram, also abbreviated PSG. The name is derived from Greek and Latin roots: the Greek πολύς, the Latin somnus ("sleep"), and the Greek γράφειν.
Non-invasive ventilation (NIV) is the use of breathing support administered through a face mask, nasal mask, or a helmet. Air, usually with added oxygen, is given through the mask under positive pressure; generally the amount of pressure is alternated depending on whether someone is breathing in or out. It is termed "non-invasive" because it is delivered with a mask that is tightly fitted to the face or around the head, but without a need for tracheal intubation. While there are similarities with regard to the interface, NIV is not the same as continuous positive airway pressure (CPAP), which applies a single level of positive airway pressure throughout the whole respiratory cycle; CPAP does not deliver ventilation but is occasionally used in conditions also treated with NIV.
Obstructive sleep apnea (OSA) is the most common sleep-related breathing disorder and is characterized by recurrent episodes of complete or partial obstruction of the upper airway leading to reduced or absent breathing during sleep. These episodes are termed "apneas" with complete or near-complete cessation of breathing, or "hypopneas" when the reduction in breathing is partial. In either case, a fall in blood oxygen saturation, a disruption in sleep, or both, may result. A high frequency of apneas or hypopneas during sleep may interfere with the quality of sleep, which – in combination with disturbances in blood oxygenation – is thought to contribute to negative consequences to health and quality of life. The terms obstructive sleep apnea syndrome (OSAS) or obstructive sleep apnea–hypopnea syndrome (OSAHS) may be used to refer to OSA when it is associated with symptoms during the daytime.
Somnology is the scientific study of sleep. It includes clinical study and treatment of sleep disorders and irregularities. Sleep medicine is a subset of somnology. Hypnology has a similar meaning but includes hypnotic phenomena.
Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia is usually caused by pulmonary disease. Sometimes the concentration of oxygen in the air is decreased leading to hypoxemia.
Hypopnea is overly shallow breathing or an abnormally low respiratory rate. Hypopnea is typically defined by a decreased amount of air movement into the lungs and can cause hypoxemia It commonly is due to partial obstruction of the upper airway, but can also have neurological origins in central sleep apnea.
Continuous positive airway pressure (CPAP) is a form of positive airway pressure (PAP) ventilation in which a constant level of pressure greater than atmospheric pressure is continuously applied to the upper respiratory tract of a person. The application of positive pressure may be intended to prevent upper airway collapse, as occurs in obstructive sleep apnea, or to reduce the work of breathing in conditions such as acute decompensated heart failure. CPAP therapy is highly effective for managing obstructive sleep apnea. Compliance and acceptance of use of CPAP therapy can be a limiting factor, with 8% of people stopping use after the first night and 50% within the first year.
Breathing is the rhythmical process of moving air into (inhalation) and out of (exhalation) the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.
Central sleep apnea (CSA) or central sleep apnea syndrome (CSAS) is a sleep-related disorder in which the effort to breathe is diminished or absent, typically for 10 to 30 seconds either intermittently or in cycles, and is usually associated with a reduction in blood oxygen saturation. CSA is usually due to an instability in the body's feedback mechanisms that control respiration. Central sleep apnea can also be an indicator of Arnold–Chiari malformation.
Respiratory inductance plethysmography (RIP) is a method of evaluating pulmonary ventilation by measuring the movement of the chest and abdominal wall.
Ventilation–perfusion coupling is the relationship between ventilation and perfusion processes, which take place in the respiratory system and the cardiovascular system. Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation, which delivers oxygen to body tissues. Anatomically, the lung structure, alveolar organization, and alveolar capillaries contribute to the physiological mechanism of ventilation and perfusion. Ventilation–perfusion coupling maintains a constant ventilation/perfusion ratio near 0.8 on average, while the regional variation exists within the lungs due to gravity. When the ratio gets above or below 0.8, it is considered abnormal ventilation-perfusion coupling, also known as a ventilation–perfusion mismatch. Lung diseases, cardiac shunts, and smoking can cause a ventilation-perfusion mismatch that results in significant symptoms and diseases, which can be treated through treatments like bronchodilators and oxygen therapy.