Minute ventilation

Last updated
Lungvolumes Updated.png
TLCTotal lung capacity: the volume in the lungs at maximal inflation, the sum of VC and RV.
TVTidal volume: that volume of air moved into or out of the lungs during quiet breathing (TV indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or VT is used.)
RVResidual volume: the volume of air remaining in the lungs after a maximal exhalation
ERVExpiratory reserve volume: the maximal volume of air that can be exhaled from the end-expiratory position
IRVInspiratory reserve volume: the maximal volume that can be inhaled from the end-inspiratory level
ICInspiratory capacity: the sum of IRV and TV
IVCInspiratory vital capacity: the maximum volume of air inhaled from the point of maximum expiration
VCVital capacity: the volume of air breathed out after the deepest inhalation.
VTTidal volume: that volume of air moved into or out of the lungs during quiet breathing (VT indicates a subdivision of the lung; when tidal volume is precisely measured, as in gas exchange calculation, the symbol TV or VT is used.)
FRCFunctional residual capacity: the volume in the lungs at the end-expiratory position
RV/TLC%Residual volume expressed as percent of TLC
VAAlveolar gas volume
VLActual volume of the lung including the volume of the conducting airway.
FVCForced vital capacity: the determination of the vital capacity from a maximally forced expiratory effort
FEVtForced expiratory volume (time): a generic term indicating the volume of air exhaled under forced conditions in the first t seconds
FEV1Volume that has been exhaled at the end of the first second of forced expiration
FEFxForced expiratory flow related to some portion of the FVC curve; modifiers refer to amount of FVC already exhaled
FEFmaxThe maximum instantaneous flow achieved during a FVC maneuver
FIFForced inspiratory flow: (Specific measurement of the forced inspiratory curve is denoted by nomenclature analogous to that for the forced expiratory curve. For example, maximum inspiratory flow is denoted FIFmax. Unless otherwise specified, volume qualifiers indicate the volume inspired from RV at the point of measurement.)
PEFPeak expiratory flow: The highest forced expiratory flow measured with a peak flow meter
MVVMaximal voluntary ventilation: volume of air expired in a specified period during repetitive maximal effort

Minute ventilation (or respiratory minute volume or minute volume) is the volume of gas inhaled (inhaled minute volume) or exhaled (exhaled minute volume) from a person's lungs per minute. It is an important parameter in respiratory medicine due to its relationship with blood carbon dioxide levels. It can be measured with devices such as a Wright respirometer or can be calculated from other known respiratory parameters. Although minute volume can be viewed as a unit of volume, it is usually treated in practice as a flow rate (given that it represents a volume change over time). Typical units involved are (in metric) 0.5 L × 12 breaths/min = 6 L/min.

Contents

Several symbols can be used to represent minute volume. They include (V̇ or V-dot) or Q (which are general symbols for flow rate), MV, and VE.

Determination of minute volume

Minute volume can either be measured directly or calculated from other known parameters.

Measurement of minute volume

Minute volume is the amount of gas inhaled or exhaled from a person's lungs in one minute. It can be measured by a Wright respirometer or other device capable of cumulatively measuring gas flow, such as mechanical ventilators.

Calculation of minute volume

If both tidal volume (VT) and respiratory rate (ƒ or RR) are known, minute volume can be calculated by multiplying the two values. One must also take care to consider the effect of dead space on alveolar ventilation, as seen below in "Relationship to other physiological rates".

Physiological significance of minute volume

Blood carbon dioxide (PaCO2) levels generally vary inversely with minute volume.[ citation needed ] For example, a person with increased minute volume (e.g. due to hyperventilation) should demonstrate a lower blood carbon dioxide level. The healthy human body will alter minute volume in an attempt to maintain physiologic homeostasis. A normal minute volume while resting is about 5–8 liters per minute in humans. [1] Minute volume generally decreases when at rest, and increases with exercise. For example, during light activities minute volume may be around 12 litres. Riding a bicycle increases minute ventilation by a factor of 2 to 4 depending on the level of exercise involved. Minute ventilation during moderate exercise may be between 40 and 60 litres per minute. [2] [3]

Hyperventilation is the term for having a minute ventilation higher than physiologically appropriate. Hypoventilation describes a minute volume less than physiologically appropriate.

Relationship to other physiological rates

Minute volume comprises the sum of alveolar ventilation and dead space ventilation. That is:

where is alveolar ventilation, and represents dead space ventilation.

Related Research Articles

<span class="mw-page-title-main">Respiratory system</span> Biological system in animals and plants for gas exchange

The respiratory system is a biological system consisting of specific organs and structures used for gas exchange in animals and plants. The anatomy and physiology that make this happen varies greatly, depending on the size of the organism, the environment in which it lives and its evolutionary history. In land animals the respiratory surface is internalized as linings of the lungs. Gas exchange in the lungs occurs in millions of small air sacs; in mammals and reptiles these are called alveoli, and in birds they are known as atria. These microscopic air sacs have a very rich blood supply, thus bringing the air into close contact with the blood. These air sacs communicate with the external environment via a system of airways, or hollow tubes, of which the largest is the trachea, which branches in the middle of the chest into the two main bronchi. These enter the lungs where they branch into progressively narrower secondary and tertiary bronchi that branch into numerous smaller tubes, the bronchioles. In birds, the bronchioles are termed parabronchi. It is the bronchioles, or parabronchi that generally open into the microscopic alveoli in mammals and atria in birds. Air has to be pumped from the environment into the alveoli or atria by the process of breathing which involves the muscles of respiration.

Diffusing capacity of the lung (DL) measures the transfer of gas from air in the lung, to the red blood cells in lung blood vessels. It is part of a comprehensive series of pulmonary function tests to determine the overall ability of the lung to transport gas into and out of the blood. DL, especially DLCO, is reduced in certain diseases of the lung and heart. DLCO measurement has been standardized according to a position paper by a task force of the European Respiratory and American Thoracic Societies.

Dead space is the volume of air that is inhaled that does not take part in the gas exchange, because it either remains in the conducting airways or reaches alveoli that are not perfused or poorly perfused. It means that not all the air in each breath is available for the exchange of oxygen and carbon dioxide. Mammals breathe in and out of their lungs, wasting that part of the inhalation which remains in the conducting airways where no gas exchange can occur.

<span class="mw-page-title-main">Gas exchange</span> Process by which gases diffuse through a biological membrane

Gas exchange is the physical process by which gases move passively by diffusion across a surface. For example, this surface might be the air/water interface of a water body, the surface of a gas bubble in a liquid, a gas-permeable membrane, or a biological membrane that forms the boundary between an organism and its extracellular environment.

In physiology, respiration is the movement of oxygen from the outside environment to the cells within tissues, and the removal of carbon dioxide in the opposite direction that's to the environment.

<span class="mw-page-title-main">Hypercapnia</span> Abnormally high tissue carbon dioxide levels

Hypercapnia (from the Greek hyper = "above" or "too much" and kapnos = "smoke"), also known as hypercarbia and CO2 retention, is a condition of abnormally elevated carbon dioxide (CO2) levels in the blood. Carbon dioxide is a gaseous product of the body's metabolism and is normally expelled through the lungs. Carbon dioxide may accumulate in any condition that causes hypoventilation, a reduction of alveolar ventilation (the clearance of air from the small sacs of the lung where gas exchange takes place) as well as resulting from inhalation of CO2. Inability of the lungs to clear carbon dioxide, or inhalation of elevated levels of CO2, leads to respiratory acidosis. Eventually the body compensates for the raised acidity by retaining alkali in the kidneys, a process known as "metabolic compensation".

The control of ventilation is the physiological mechanisms involved in the control of breathing, which is the movement of air into and out of the lungs. Ventilation facilitates respiration. Respiration refers to the utilization of oxygen and balancing of carbon dioxide by the body as a whole, or by individual cells in cellular respiration.

<span class="mw-page-title-main">Spirometry</span> Pulmonary function test

Spirometry is the most common of the pulmonary function tests (PFTs). It measures lung function, specifically the amount (volume) and/or speed (flow) of air that can be inhaled and exhaled. Spirometry is helpful in assessing breathing patterns that identify conditions such as asthma, pulmonary fibrosis, cystic fibrosis, and COPD. It is also helpful as part of a system of health surveillance, in which breathing patterns are measured over time.

<span class="mw-page-title-main">Cheyne–Stokes respiration</span> Abnormal breathing pattern

Cheyne–Stokes respiration is an abnormal pattern of breathing characterized by progressively deeper, and sometimes faster, breathing followed by a gradual decrease that results in a temporary stop in breathing called an apnea. The pattern repeats, with each cycle usually taking 30 seconds to 2 minutes. It is an oscillation of ventilation between apnea and hyperpnea with a crescendo-diminuendo pattern, and is associated with changing serum partial pressures of oxygen and carbon dioxide.

<span class="mw-page-title-main">Capnography</span> Monitoring of the concentration of carbon dioxide in respiratory gases

Capnography is the monitoring of the concentration or partial pressure of carbon dioxide (CO
2
) in the respiratory gases. Its main development has been as a monitoring tool for use during anesthesia and intensive care. It is usually presented as a graph of CO
2
(measured in kilopascals, "kPa" or millimeters of mercury, "mmHg") plotted against time, or, less commonly, but more usefully, expired volume (known as volumetric capnography). The plot may also show the inspired CO
2
, which is of interest when rebreathing systems are being used. When the measurement is taken at the end of a breath (exhaling), it is called "end tidal" CO
2
(PETCO2).

<span class="mw-page-title-main">Hypoxemia</span> Abnormally low level of oxygen in the blood

Hypoxemia is an abnormally low level of oxygen in the blood. More specifically, it is oxygen deficiency in arterial blood. Hypoxemia has many causes, and often causes hypoxia as the blood is not supplying enough oxygen to the tissues of the body.

In respiratory physiology, the ventilation/perfusion ratio is a ratio used to assess the efficiency and adequacy of the matching of two variables:

The factors that determine the values for alveolar pO2 and pCO2 are:

The Alveolar–arterial gradient, is a measure of the difference between the alveolar concentration (A) of oxygen and the arterial (a) concentration of oxygen. It is a useful parameter for narrowing the differential diagnosis of hypoxemia.

The Bohr equation, named after Danish physician Christian Bohr (1855–1911), describes the amount of physiological dead space in a person's lungs. This is given as a ratio of dead space to tidal volume. It differs from anatomical dead space as measured by Fowler's method as it includes alveolar dead space.

<span class="mw-page-title-main">Breathing</span> Process of moving air in and out of the lungs

Breathing is the process of moving air into and from the lungs to facilitate gas exchange with the internal environment, mostly to flush out carbon dioxide and bring in oxygen.

<span class="mw-page-title-main">Indirect calorimetry</span> Measurement of the heat of living organisms through indirect means

Indirect calorimetry calculates heat that living organisms produce by measuring either their production of carbon dioxide and nitrogen waste, or from their consumption of oxygen. Indirect calorimetry estimates the type and rate of substrate utilization and energy metabolism in vivo starting from gas exchange measurements. This technique provides unique information, is noninvasive, and can be advantageously combined with other experimental methods to investigate numerous aspects of nutrient assimilation, thermogenesis, the energetics of physical exercise, and the pathogenesis of metabolic diseases.

Work of breathing (WOB) is the energy expended to inhale and exhale a breathing gas. It is usually expressed as work per unit volume, for example, joules/litre, or as a work rate (power), such as joules/min or equivalent units, as it is not particularly useful without a reference to volume or time. It can be calculated in terms of the pulmonary pressure multiplied by the change in pulmonary volume, or in terms of the oxygen consumption attributable to breathing.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Ventilation-perfusion coupling</span>

Ventilation-perfusion coupling is the relationship between ventilation and perfusion processes, which take place in the respiratory and cardiovascular systems. Ventilation is the movement of gas during breathing, and perfusion is the process of pulmonary blood circulation, which delivers oxygen to body tissues. Anatomically, the lung structure, alveolar organization, and alveolar capillaries contribute to the physiological mechanism of ventilation and perfusion. Ventilation-perfusion coupling maintains a constant ratio near 0.8 on average, while the regional variation exists within the lungs due to gravity. When the ratio gets above or below 0.8, it is considered abnormal ventilation-perfusion coupling, also known as a ventilation-perfusion mismatch. Lung diseases, cardiac shunts, and smoking can cause a ventilation-perfusion mismatch that results in significant symptoms and diseases, which can be treated through treatments like bronchodilators and oxygen therapy.

References

  1. "Avoid Airway Catastrophes on the Extremes of Minute Ventilation". ACEP Now. Retrieved 2023-01-11.
  2. Zuurbier, M., Hoek, G., van den Hazel, P., Brunekreef, B. (2009). "Minute ventilation of cyclists, car and bus passengers: an experimental study". Environmental Health. 8 (48): 48. doi: 10.1186/1476-069x-8-48 . PMC   2772854 . PMID   19860870.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. Int Panis, L (2010). "Exposure to particulate matter in traffic: A comparison of cyclists and car passengers". Atmospheric Environment. 44 (19): 2263–2270. Bibcode:2010AtmEn..44.2263I. doi:10.1016/j.atmosenv.2010.04.028. S2CID   56142753.