Second wind (sleep)

Last updated
A second wind may come more readily at certain points of the circadian (24hr) biological clock than others. Biological clock human.svg
A second wind may come more readily at certain points of the circadian (24hr) biological clock than others.

Second wind (or third wind, fourth wind, etc.), a colloquial name for the scientific term wake maintenance zone, is a sleep phenomenon in which a person, after a prolonged period of staying awake, temporarily ceases to feel drowsy, often making it difficult to fall asleep when exhausted. [1] [2] They are the result of circadian rhythms cycling into a phase of wakefulness. [3] For example, many people experience the effects of a second wind in the early morning even after an entire night without sleep because it is the time when they would normally wake up.

Contents

While most "winds" coincide with the 24-hour cycle, those experiencing extended sleep deprivation over multiple days have been known to experience a "fifth day turning point".

Characteristics

The "second wind" phenomenon may have evolved as a survival mechanism as part of the fight-or-flight response, allowing sleep-deprived individuals briefly to function at a higher level than they would without sleep deprivation. [4]

Performance enhancement

One study presented a series of tasks of increasing difficulty to 16 young adults who had not slept in 35 hours and observed heightened activity in several brain regions using magnetic resonance imaging. [5] Researcher Sean P.A. Drummond commented that the ability to summon a second wind allowed them to "call on cognitive resources they have that they normally don't need to use to do a certain task". (He also noted that their performance, though an improvement considering their state of sleep deprivation, were below what it would be had they slept.)[ citation needed ]

Another study found significant improvement in the performance of 31 adults on various neurobehavioral tests after the onset of the wake maintenance zone as compared to their performance just three hours prior, despite the fact that the subjects had been awake longer. [6] The improvement as test subjects caught another wind was even more pronounced on the second day of extended wakefulness. A later study reproduced similar results. [7]

Duration

The wake maintenance zone generally lasts 2 to 3 hours, during which one is less inclined to fall asleep. [6] While potentially useful for completing urgent tasks, it may have a potentially unwanted side-effect of keeping one awake for several hours after the task has been completed.[ citation needed ] The hypervigilance and stimulation brought on by a second wind can cause fatigue, which, in the case of infants, can be literally painful. [4] Thus, an infant may begin crying when sleep habits are disrupted.[ citation needed ]

"Fifth day turning point"

Multiple studies have observed that individuals subjected to total sleep deprivation for extended periods spanning multiple days may feel "helplessly sleepy" up until the fifth day, upon which all observed individuals would feel what may be described as a second wind. [8] This particular form of the experience has been dubbed the "fifth day turning point" (Pasnau et al. 1968).

Causes

There are multiple possible ways by which a person may experience a second wind, depending on the time of day. A second wind at around 6:008:00 a.m. may be explained by cortisol, a light-triggered hormone, peaking at that time.[ citation needed ] Cortisol helps facilitate adrenaline's role in glycogenolysis and, therefore, in glucose release. [9] This may help to maintain one's wakefulness. As late afternoon transitions into evening, changes in light levels can stimulate the suprachiasmatic nucleus in the brain to promote an arousal signal. [10] At about 10:30 p.m. (depending on factors including the season and the condition of the individual), melatonin the hormone responsible for preparing the body for sleeppeaks; a second wind may occur at this time if a person resists sleeping or fails to fall asleep before the peak. [9] Such second winds could aggravate sleep debt.

In 2018, the second wind phenomenon, or "forbidden sleep zone of the wake maintenance zone", in scientific terms, [11] was found to be caused by the buildup of dopamine in proportion to the time spent awake, as a paradoxical counterbalance to adenosine, the hormone of sleep pressure. [12]

Although there is one zone of minimal sleep tendency, which is often termed the "wake maintenance zone" "approximately one to three hours before habitual bedtime", [13] there are several other zones of lower sleep tendency; hence, these zones should be collectively termed "wake maintenance zones" in the plural, or the more colloquial "sleep gates". [7] [11]

Interactions with medications

When hypnotic medications are administered too early in the evening, such medications may reach peak levels in the blood during the wake maintenance zone. Not only could this negate the soporific effectiveness of the medication, it may also cause users of the drug to experience disinhibition, hallucinations, or other dissociative phenomena, should they remain awake. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Sleep</span> Naturally recurring resting state of mind and body

Sleep is a state of reduced mental and physical activity in which consciousness is altered and sensory activity is inhibited to a certain extent. During sleep, there is a decrease in muscle activity, and interactions with the surrounding environment. While sleep differs from wakefulness in terms of the ability to react to stimuli, it still involves active brain patterns, making it more reactive than a coma or disorders of consciousness.

<span class="mw-page-title-main">Sleep cycle</span> Oscillation between the slow-wave and REM phases of sleep

The sleep cycle is an oscillation between the slow-wave and REM (paradoxical) phases of sleep. It is sometimes called the ultradian sleep cycle, sleep–dream cycle, or REM-NREM cycle, to distinguish it from the circadian alternation between sleep and wakefulness. In humans, this cycle takes 70 to 110 minutes. Within the sleep of adults and infants there are cyclic fluctuations between quiet and active sleep. These fluctuations may persist during wakefulness as rest-activity cycles but are less easily discerned.

Polyphasic sleep is the practice of sleeping during multiple periods over the course of 24 hours, in contrast to monophasic sleep, which is one period of sleep within 24 hours. Biphasicsleep refers to two periods, while polyphasic usually means more than two. Segmented sleep and divided sleep may refer to polyphasic or biphasic sleep, but may also refer to interrupted sleep, where the sleep has one or several shorter periods of wakefulness, as was the norm for night sleep in pre-industrial societies.

Somnolence is a state of strong desire for sleep, or sleeping for unusually long periods. It has distinct meanings and causes. It can refer to the usual state preceding falling asleep, the condition of being in a drowsy state due to circadian rhythm disorders, or a symptom of other health problems. It can be accompanied by lethargy, weakness and lack of mental agility.

Hypersomnia is a neurological disorder of excessive time spent sleeping or excessive sleepiness. It can have many possible causes and can cause distress and problems with functioning. In the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5), hypersomnolence, of which there are several subtypes, appears under sleep-wake disorders.

Shift work is an employment practice designed to keep a service or production line operational at all times. The practice typically sees the day divided into shifts, set periods of time during which different groups of workers perform their duties. The term "shift work" includes both long-term night shifts and work schedules in which employees change or rotate shifts.

Sleep inertia is a physiological state of impaired cognitive and sensory-motor performance that is present immediately after awakening. It persists during the transition of sleep to wakefulness, where an individual will experience feelings of drowsiness, disorientation and a decline in motor dexterity. Impairment from sleep inertia may take several hours to dissipate. In the majority of cases, morning sleep inertia is experienced for 15 to 30 minutes after waking.

Non-24-hour sleep–wake disorder is one of several chronic circadian rhythm sleep disorders (CRSDs). It is defined as a "chronic steady pattern comprising [...] daily delays in sleep onset and wake times in an individual living in a society". Symptoms result when the non-entrained (free-running) endogenous circadian rhythm drifts out of alignment with the light–dark cycle in nature. Although this sleep disorder is more common in blind people, affecting up to 70% of the totally blind, it can also affect sighted people. Non-24 may also be comorbid with bipolar disorder, depression, and traumatic brain injury. The American Academy of Sleep Medicine (AASM) has provided CRSD guidelines since 2007 with the latest update released in 2015.

A zeitgeber is any external or environmental cue that entrains or synchronizes an organism's biological rhythms, usually naturally occurring and serving to entrain to the Earth's 24-hour light/dark and 12-month cycles.

Circadian rhythm sleep disorders (CRSD), also known as circadian rhythm sleep-wake disorders (CRSWD), are a family of sleep disorders which affect the timing of sleep. CRSDs arise from a persistent pattern of sleep/wake disturbances that can be caused either by dysfunction in one's biological clock system, or by misalignment between one's endogenous oscillator and externally imposed cues. As a result of this mismatch, those affected by circadian rhythm sleep disorders have a tendency to fall asleep at unconventional time points in the day. These occurrences often lead to recurring instances of disturbed rest, where individuals affected by the disorder are unable to go to sleep and awaken at "normal" times for work, school, and other social obligations. Delayed sleep phase disorder, advanced sleep phase disorder, non-24-hour sleep–wake disorder and irregular sleep–wake rhythm disorder represents the four main types of CRSD.

Shift work sleep disorder (SWSD) is a circadian rhythm sleep disorder characterized by insomnia, excessive sleepiness, or both affecting people whose work hours overlap with the typical sleep period. Insomnia can be the difficulty to fall asleep or to wake up before the individual has slept enough. About 20% of the working population participates in shift work. SWSD commonly goes undiagnosed, so it's estimated that 10–40% of shift workers have SWSD. The excessive sleepiness appears when the individual has to be productive, awake and alert. Both symptoms are predominant in SWSD. There are numerous shift work schedules, and they may be permanent, intermittent, or rotating; consequently, the manifestations of SWSD are quite variable. Most people with different schedules than the ordinary one might have these symptoms but the difference is that SWSD is continual, long-term, and starts to interfere with the individual's life.

Light effects on circadian rhythm are the effects that light has on circadian rhythm.

<span class="mw-page-title-main">Sleep deprivation</span> Condition of not having enough sleep

Sleep deprivation, also known as sleep insufficiency or sleeplessness, is the condition of not having adequate duration and/or quality of sleep to support decent alertness, performance, and health. It can be either chronic or acute and may vary widely in severity. All known animals sleep or exhibit some form of sleep behavior, and the importance of sleep is self-evident for humans, who spend nearly a third of our time sleeping.

<span class="mw-page-title-main">Effects of fatigue on safety</span>

Fatigue is a major safety concern in many fields, but especially in transportation, because fatigue can result in disastrous accidents. Fatigue is considered an internal precondition for unsafe acts because it negatively affects the human operator's internal state. Research has generally focused on pilots, truck drivers, and shift workers.

<span class="mw-page-title-main">Charles Czeisler</span> American physician and sleep researcher

Charles Andrew Czeisler is a Hungarian-American physician and sleep and circadian researcher. He is a leading researcher and author in the fields of the effects of light on human physiology, circadian rhythms and sleep medicine.

<span class="mw-page-title-main">Neuroscience of sleep</span> Study of the neuroscientific and physiological basis of the nature of sleep

The neuroscience of sleep is the study of the neuroscientific and physiological basis of the nature of sleep and its functions. Traditionally, sleep has been studied as part of psychology and medicine. The study of sleep from a neuroscience perspective grew to prominence with advances in technology and the proliferation of neuroscience research from the second half of the twentieth century.

Studies, which include laboratory investigations and field evaluations of population groups that are analogous to astronauts, provide compelling evidence that working long shifts for extended periods of time contributes to sleep deprivation and can cause performance decrements, health problems, and other detrimental consequences, including accidents, that can affect both the worker and others.

<span class="mw-page-title-main">Sleep in space</span> Sleep in an unusual place

Sleeping in space is part of space medicine and mission planning, with impacts on the health, capabilities and morale of astronauts.

<span class="mw-page-title-main">Pilot fatigue</span> Reduced pilot performance from inadequate energy

The International Civil Aviation Organization (ICAO) defines fatigue as "A physiological state of reduced mental or physical performance capability resulting from sleep loss or extended wakefulness, circadian phase, or workload." The phenomenon places great risk on the crew and passengers of an airplane because it significantly increases the chance of pilot error. Fatigue is particularly prevalent among pilots because of "unpredictable work hours, long duty periods, circadian disruption, and insufficient sleep". These factors can occur together to produce a combination of sleep deprivation, circadian rhythm effects, and 'time-on task' fatigue. Regulators attempt to mitigate fatigue by limiting the number of hours pilots are allowed to fly over varying periods of time.

<span class="mw-page-title-main">Sleep deprivation in higher education</span> Health issue in students

Sleep deprivation – the condition of not having enough sleep – is a common health issue for students in higher education. This issue has several underlying and negative consequences, but there are a few helpful improvements that students can make to reduce its frequency and severity.

References

  1. "Nickelodeon Parents".
  2. 1 2 Stephen H. Sheldon; Meir H. Kryger; Richard Ferber; David Gozal (2005). "Principles and Practice of Pediatric Sleep Medicine".
  3. "PsychEd Up, Vol. 2, Issue 2" (PDF). p. 6. Retrieved 16 May 2013.
  4. 1 2 Weissbluth, Marc (1999). Healthy Sleep Habits, Happy Child. ISBN   9780449004029.
  5. Marill, Michele Cohen. "Surviving the Day After an All-Nighter". WebMD .
  6. 1 2 Julia A. Shekleton; Shantha M. W. Rajaratnam; Joshua J. Gooley; Eliza Van Reen; Charles A. Czeisler & Steven W. Lockley. (Apr 15, 2013). "Improved Neurobehavioral Performance during the Wake Maintenance Zone". Journal of Clinical Sleep Medicine. 09 (4): 353–362. doi:10.5664/jcsm.2588. PMC   3601314 . PMID   23585751.
  7. 1 2 Zeeuw, J; Wisniewski, S; Papakonstantinou, A; Bes, F; Wahnschaffe, A; Zaleska, M; Kunz, D; Münch, M (20 July 2018). "The alerting effect of the wake maintenance zone during 40 hours of sleep deprivation". Scientific Reports. 8 (1): 11012. Bibcode:2018NatSR...811012Z. doi: 10.1038/s41598-018-29380-z . PMC   6054682 . PMID   30030487.
  8. Neilsen, Tore A, Marie Dupont, and Jacque Montplaisir. "A 20-h recovery sleep after prolonged sleep restriction: some effects of competing in a world record-setting cinemarathon" (PDF).{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link)
  9. 1 2 Brunshaw, Jacquelinee (July 31, 2012). "Paying the sandman: Bad night patterns, chronic sleep debt and risks to your health". National Post.
  10. Lieberman III, Joseph A. & David N. Neubauer. "Normal Sleep and Wakefulness" (PDF).{{cite journal}}: Cite journal requires |journal= (help)
  11. 1 2 Lavie, P (May 1986). "Ultrashort sleep-waking schedule. III. 'Gates' and 'forbidden zones' for sleep". Electroencephalography and Clinical Neurophysiology. 63 (5): 414–25. doi:10.1016/0013-4694(86)90123-9. PMID   2420557.
  12. Volkow, Nora D.; Wang, Gene-Jack; Telang, Frank; Fowler, Joanna S.; Logan, Jean; Wong, Christopher; Ma, Jim; Pradhan, Kith; Tomasi, Dardo; Thanos, Peter K.; Ferré, Sergi; Jayne, Millard (20 August 2008). "Sleep Deprivation Decreases Binding of [11C]Raclopride to Dopamine D2/D3 Receptors in the Human Brain". Journal of Neuroscience. 28 (34): 8454–8461. doi: 10.1523/JNEUROSCI.1443-08.2008 . PMC   2710773 . PMID   18716203.
  13. Strogatz, SH; Kronauer, RE; Czeisler, CA (July 1987). "Circadian pacemaker interferes with sleep onset at specific times each day: role in insomnia". The American Journal of Physiology. 253 (1 Pt 2): R172-8. doi:10.1152/ajpregu.1987.253.1.R172. PMID   3605382.