Yttrium lithium fluoride

Last updated
Yttrium lithium fluoride
Identifiers
3D model (JSmol)
PubChem CID
  • InChI=1S/4FH.Li.Y/h4*1H;;/q;;;;+1;+3/p-4
    Key: HIQSCMNRKRMPJT-UHFFFAOYSA-J
  • [Li+].[F-].[F-].[F-].[F-].[Y+3]
Properties
F4LiY
Molar mass 171.84 g·mol−1
Related compounds
Other cations
Lithium holmium fluoride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Yttrium lithium fluoride (LiYF4, sometimes abbreviated YLF) is a birefringent crystal, typically doped with neodymium or praseodymium and used as a gain medium in solid-state lasers. [1] Yttrium is the substitutional element in LiYF4. The hardness of YLF is significantly lower than other commons crystalline laser media, i.e. yttrium aluminium garnet. [2]

Related Research Articles

<span class="mw-page-title-main">Laser construction</span>

A laser is constructed from three principal parts:

<span class="mw-page-title-main">Neodymium</span> Chemical element, symbol Nd and atomic number 60

Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes in air and moisture. When oxidized, neodymium reacts quickly producing pink, purple/blue and yellow compounds in the +2, +3 and +4 oxidation states. It is generally regarded as having one of the most complex spectra of the elements. Neodymium was discovered in 1885 by the Austrian chemist Carl Auer von Welsbach, who also discovered praseodymium. It is present in significant quantities in the minerals monazite and bastnäsite. Neodymium is not found naturally in metallic form or unmixed with other lanthanides, and it is usually refined for general use. Neodymium is fairly common—about as common as cobalt, nickel, or copper—and is widely distributed in the Earth's crust. Most of the world's commercial neodymium is mined in China, as is the case with many other rare-earth metals.

<span class="mw-page-title-main">Praseodymium</span> Chemical element, symbol Pr and atomic number 59

Praseodymium is a chemical element with the symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

<span class="mw-page-title-main">Nd:YAG laser</span> Crystal used as a lasing medium for solid-state lasers

Nd:YAG (neodymium-doped yttrium aluminum garnet; Nd:Y3Al5O12) is a crystal that is used as a lasing medium for solid-state lasers. The dopant, triply ionized neodymium, Nd(III), typically replaces a small fraction (1%) of the yttrium ions in the host crystal structure of the yttrium aluminum garnet (YAG), since the two ions are of similar size. It is the neodymium ion which provides the lasing activity in the crystal, in the same fashion as red chromium ion in ruby lasers.

A diode-pumped solid-state laser (DPSSL) is a solid-state laser made by pumping a solid gain medium, for example, a ruby or a neodymium-doped YAG crystal, with a laser diode.

Neodymium(III) chloride or neodymium trichloride is a chemical compound of neodymium and chlorine with the formula NdCl3. This anhydrous compound is a mauve-colored solid that rapidly absorbs water on exposure to air to form a purple-colored hexahydrate, NdCl3·6H2O. Neodymium(III) chloride is produced from minerals monazite and bastnäsite using a complex multistage extraction process. The chloride has several important applications as an intermediate chemical for production of neodymium metal and neodymium-based lasers and optical fibers. Other applications include a catalyst in organic synthesis and in decomposition of waste water contamination, corrosion protection of aluminium and its alloys, and fluorescent labeling of organic molecules (DNA).

<span class="mw-page-title-main">Yttrium aluminium garnet</span> Synthetic crystalline material of the garnet group

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM).

Neodymium-doped yttrium orthovanadate (Nd:YVO4) is a crystalline material formed by adding neodymium ions to yttrium orthovanadate. It is commonly used as an active laser medium for diode-pumped solid-state lasers. It comes as a transparent blue-tinted material. It is birefringent, therefore rods made of it are usually rectangular.

Yttrium orthovanadate (YVO4) is a transparent crystal. Undoped YVO4 is also used to make efficient high-power polarizing prisms similar to Glan–Taylor prisms.

<span class="mw-page-title-main">Solid-state laser</span> Laser which uses a solid gain medium

A solid-state laser is a laser that uses a gain medium that is a solid, rather than a liquid as in dye lasers or a gas as in gas lasers. Semiconductor-based lasers are also in the solid state, but are generally considered as a separate class from solid-state lasers, called laser diodes.

<span class="mw-page-title-main">Lithium niobate</span> Chemical compound

Lithium niobate is a synthetic salt consisting of niobium, lithium, and oxygen. Its single crystals are an important material for optical waveguides, mobile phones, piezoelectric sensors, optical modulators and various other linear and non-linear optical applications. Lithium niobate is sometimes referred to by the brand name linobate.

This is a list of acronyms and other initialisms used in laser physics and laser applications.

Nd-doped YCOB (Nd:YCa4O(BO3)3) is a nonlinear optical crystal, which is commonly used as an active laser medium. It can be grown from a melt by the Czochralski technique. It belongs to the monoclinic system with space group Cs2-Cm. Each neodymium ion replaces a yttrium ion in the YCOB crystal structure.

Neodymium-doped yttrium lithium fluoride (Nd:YLF) is a lasing medium for arc lamp-pumped and diode-pumped solid-state lasers. The YLF crystal (LiYF4) is naturally birefringent, and commonly used laser transitions occur at 1047 nm and 1053 nm.

<span class="mw-page-title-main">Yttrium</span> Chemical element, symbol Y and atomic number 39

Yttrium is a chemical element with the symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.

A dopant is a trace of impurity element that is introduced into a chemical material to alter its original electrical or optical properties. The amount of dopant necessary to cause changes is typically very low. When doped into crystalline substances, the dopant's atoms get incorporated into its crystal lattice. The crystalline materials are frequently either crystals of a semiconductor such as silicon and germanium for use in solid-state electronics, or transparent crystals for use in the production of various laser types; however, in some cases of the latter, noncrystalline substances such as glass can also be doped with impurities.

<span class="mw-page-title-main">Lightwave Electronics Corporation</span>

Lightwave Electronics Corporation was a developer and manufacturer of diode-pumped solid-state lasers, and was a significant contributor to the creation and maturation of this technology. Lightwave Electronics was a technology-focused company, with diverse markets, including science and micromachining. Inventors employed by Lightwave Electronics received 51 US patents, and Lightwave Electronics products were referenced by non-affiliated inventors in 91 US patents.

<span class="mw-page-title-main">Laser beam machining</span> Use of laser beams to remove material from a workpiece

Laser beam machining (LBM) is a form of machining that uses heat directed from a laser beam. This process uses thermal energy to remove material from metallic or nonmetallic surfaces. The high frequency of monochromatic light will fall on the surface, thus heating, melting and vaporizing the material due to the impinge of photons . Laser beam machining is best suited for brittle materials with low conductivity, but can be used on most materials.

<span class="mw-page-title-main">Pr:YLF laser</span> Type of solid-state laser

A Pr:YLF laser (or Pr3+:LiYF4 laser) is a solid state laser that uses a praseodymium doped yttrium-lithium-fluoride crystal as its gain medium. The first Pr:YLF laser was built in 1977 and emitted pulses at 479 nm. Pr:YLF lasers can emit in many different wavelengths in the visible spectrum of light, making them potentially interesting for RGB applications and materials processing. Notable emission wavelengths are 479 nm, 523 nm, 607 nm and 640 nm.

References

  1. Ignat’ev, A. I.; Nikonorov, N. V.; Mochalov, I. V.; Tsygankova, E. V.; Reĭterov, V. M. (2007-11-01). "Features of the etching of an yttrium–lithium fluoride crystal in HNO3 solutions". Journal of Optical Technology. 74 (11): 776–778. doi:10.1364/JOT.74.000776.
  2. Chicklis, E.P.; Folweiler, R.C.; Naitnan, C.S. "0.85 MICRON SOLID STATE LASER: MATERIAL EVALUATION" (PDF). Archived (PDF) from the original on May 10, 2022. Retrieved 10 May 2022.

See also