Fluor-liddicoatite

Last updated
Fluor-liddicoatite
Liddicoatite-t5151b.jpg
Liddicoatite from the Ambesabora pegmatite, Madagascar. Photo Rob Lavinsky
General
CategoryCyclosilicate
Tourmaline Group
Formula
(repeating unit)
Ca(Li2Al)Al6(BO3)3Si6O18(OH)3F
IMA symbol Fld [1]
Strunz classification 9.CK.05 (10 ed)
8/E.19-80 (8 ed)
Dana classification61.3.1.2
Crystal system Trigonal
Crystal class Ditrigonal pyramidal (3m)
(same H-M symbol)
Space group R3m
Identification
Formula mass 945.8 g/mol
ColorUsually smoky brown, but also pink, red, green, blue, or rarely white.
Crystal habit Stout prismatic, with a curved convex trigonal outline
Cleavage Poor or absent on {0001} [2]
Fracture Uneven to conchoidal
Tenacity Brittle
Mohs scale hardness7+12
Luster Vitreous
Streak White to very light brown
Diaphaneity Transparent to translucent
Specific gravity 3.02
Optical propertiesUniaxial (−)
Refractive index No = 1.637, Ne = 1.621
Pleochroism Strong: O dark brown or pink, E light brown or pale pink
Other characteristicsNot fluorescent, not radioactive
References [3] [4] [5] [6]

Fluor-liddicoatite [7] is a rare member of the tourmaline group of minerals, elbaite subgroup, and the theoretical calcium endmember of the elbaite-fluor-liddicoatite series; the pure end-member has not yet been found in nature. [3] Fluor-liddicoatite is indistinguishable from elbaite by X-ray diffraction techniques. It forms a series with elbaite and probably also with olenite. [3] Liddiocoatite is currently a non-approved mineral name, but Aurisicchio et al. (1999) and Breaks et al. (2008) found OH-dominant species. [8] [9] Formulae are

Contents

Fluor-liddicoatite was named in 1977 after Richard T. Liddicoat (1918–2002) gemmologist and president of the Gemological Institute of America, [2] who is well known for introducing the GIA diamond grading system in 1953.

Unit cell

Fluor-liddicoatite belongs to the trigonal crystal system, class 3 m, space group R 3m. It has a rhombohedral lattice, with unit cell parameters

Structure

Fluor-liddicoatite is isostructural with (has the same structure as) all members of the tourmaline group, [3] which are cyclosilicates with the general formula

For fluor-liddicoatite, the X sites are occupied by Ca, the Y sites by Li or Al and the Z sites by Al, giving the formula

The Y sites are octahedrally coordinated by oxygen O and hydroxyl OH ions; three octahedra surround the three-fold axis at the origin, and each octahedron shares an edge with each of its two nearest neighbours. The silicon Si ions are tetrahedrally coordinated by O, forming SiO4 groups. These tetrahedra form six-membered rings, with two of the four Os in each tetrahedron shared between adjacent tetrahedra. So the formula for the ring is Si6O18. In each Si tetrahedron an O at one free apex is shared with one of the Y octahedra. The boron B ions occur in triangular coordination, each triangle sharing a common apex with two Y octahedra. This composite unit is linked to others like it by aluminum Al ions at the Z sites, and its outer oxygen atoms are also atoms of the aluminum coordination octahedra. The X sites are sandwiched between the units along the c axis. [10] [11]

Crystal habit

Crystals are stout prismatic, with a curved convex trigonal outline, generally elongated and striated parallel to the c axis. Crystals are hemimorphic, meaning that the two ends of the crystal have different forms. Fluor-liddicoatite usually has a pedion (a single crystal face) opposite one or two pyramids. [3]

Physical properties

A polished slice of liddicoatite from Madagascar. Photo Rob Lavinsky Liddicoatite-68003.jpg
A polished slice of liddicoatite from Madagascar. Photo Rob Lavinsky

The color is usually smoky brown, but also pink, red, green, blue, or rarely white. Color zoning is abundant at the type locality, parallel to pyramid faces. This is due to changes in the solution during crystal growth. As the concentration of trace elements that serve as coloring agents changes, there will be areas of less or more color in different parts of the crystal. When the crystal is sliced perpendicular to the c axis, triangular zoning may be seen, together with a trigonal star that radiates from the centre of the crystal, with the three rays directed towards the corners of the triangular color patterns. [12]
The pink-red color is due to the manganese Mn3+ content, and the green color is due to intervalence charge transfer transactions between iron Fe2+ and titanium Ti4+. [12]
The streak is white to very light brown, lighter than the mass color, luster is vitreous and crystals are transparent to translucent.
Cleavage is poor perpendicular to the c crystal axis, or it may be totally absent. [2] The mineral is brittle, with an uneven to conchoidal fracture. It is very hard, with hardness 7+12, a little harder than zircon, making it suitable for use as a gemstone. Specific gravity is 3.02, a little lighter than fluorite. It is neither fluorescent nor radioactive.

Optical properties

Fluor-liddicoatite is uniaxial (-), with refractive Indices No = 1.637 and Ne = 1.621 for the type specimen. The refractive indices, however, will vary from specimen to specimen, as they depend on the content of iron and manganese, which are usually present as trace elements. [2] Pleochroism is strong: O dark brown or pink, E light brown or pale pink.

Environment

Fluor-liddicoatite is detrital in soil at the type locality, presumably derived from the weathering of granitic pegmatites. [10] Associated minerals are quartz, elbaite, albite and micas. [6]

Localities

A spectacular radiating spray of liddicoatite crystals, from the Minh Tien Mine, Luc Yen, Vietnam. Size: 8.5 x 7.6 x 4.7 cm. Liddicoatite-280365.jpg
A spectacular radiating spray of liddicoatite crystals, from the Minh Tien Mine, Luc Yen, Vietnam. Size: 8.5 x 7.6 x 4.7 cm.

The type locality is Anjanabonoina, Tsilaizina, Antsirabe, Madagascar. [3] Type Material is stored at the National Museum of Natural History, Smithsonian Institution, Washington, D.C., US, catalogue #135815; further type material is stored at the Natural History Museum, London, the Royal Ontario Museum, Canada and the Geological Survey of Canada. [2]

Related Research Articles

<span class="mw-page-title-main">Kyanite</span> Aluminosilicate mineral

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.

<span class="mw-page-title-main">Muscovite</span> Hydrated phyllosilicate mineral

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

<span class="mw-page-title-main">Tourmaline</span> Cyclosilicate mineral group

Tourmaline is a crystalline silicate mineral group in which boron is compounded with elements such as aluminium, iron, magnesium, sodium, lithium, or potassium. This gemstone comes in a wide variety of colors.

<span class="mw-page-title-main">Brookite</span>

Brookite is the orthorhombic variant of titanium dioxide (TiO2), which occurs in four known natural polymorphic forms (minerals with the same composition but different structure). The other three of these forms are akaogiite (monoclinic), anatase (tetragonal) and rutile (tetragonal). Brookite is rare compared to anatase and rutile and, like these forms, it exhibits photocatalytic activity. Brookite also has a larger cell volume than either anatase or rutile, with 8 TiO2 groups per unit cell, compared with 4 for anatase and 2 for rutile. Iron (Fe), tantalum (Ta) and niobium (Nb) are common impurities in brookite.

<span class="mw-page-title-main">Vivianite</span> Phosphate mineral

Vivianite (Fe2+
3
(PO
4
)
2
·8H
2
O
) is a hydrated iron phosphate mineral found in a number of geological environments. Small amounts of manganese Mn2+, magnesium Mg2+, and calcium Ca2+ may substitute for iron Fe2+ in the structure. Pure vivianite is colorless, but the mineral oxidizes very easily, changing the color, and it is usually found as deep blue to deep bluish green prismatic to flattened crystals.
Vivianite crystals are often found inside fossil shells, such as those of bivalves and gastropods, or attached to fossil bone.

<span class="mw-page-title-main">Brazilianite</span>

Brazilianite, whose name derives from its country of origin, Brazil, is a typically yellow-green phosphate mineral, most commonly found in phosphate-rich pegmatites.

<span class="mw-page-title-main">Pezzottaite</span> Mineral species

Pezzottaite, marketed under the name raspberyl or raspberry beryl, is a mineral species first recognized by the International Mineralogical Association in September 2003. Pezzottaite is a caesium analogue of beryl, a silicate of caesium, beryllium, lithium and aluminium, with the chemical formula Cs(Be2Li)Al2Si6O18. Named after Italian geologist and mineralogist Federico Pezzotta, pezzottaite was first thought to be either red beryl or a new variety of beryl ("caesium beryl"); unlike actual beryl, however, pezzottaite contains lithium and crystallizes in the trigonal crystal system rather than the hexagonal system.

<span class="mw-page-title-main">Elbaite</span> Cyclosilicate, mineral

Elbaite, a sodium, lithium, aluminium boro-silicate, with the chemical composition Na(Li1.5Al1.5)Al6Si6O18(BO3)3(OH)4, is a mineral species belonging to the six-member ring cyclosilicate tourmaline group.

<span class="mw-page-title-main">Vauxite</span> Phosphate mineral

Vauxite is a phosphate mineral with the chemical formula Fe2+Al2(PO4)2(OH)2·6(H2O). It belongs to the laueite – paravauxite group, paravauxite subgroup, although Mindat puts it as a member of the vantasselite Al4(PO4)3(OH)3·9H2O group. There is no similarity in structure between vauxite and paravauxite Fe2+Al2(PO4)2(OH)2·8H2O or metavauxite Fe3+Al2(PO4)2(OH)2·8H2O, even though they are closely similar chemically and all minerals occur together as secondary minerals. Vauxite was named in 1922 for George Vaux Junior (1863–1927), an American attorney and mineral collector.

<span class="mw-page-title-main">Eosphorite</span> Phosphate mineral

Eosphorite is a brown (occasionally pink) manganese hydrous phosphate mineral with chemical formula: MnAl(PO4)(OH)2·H2O. It is used as a gemstone.

<span class="mw-page-title-main">Julgoldite</span>

Julgoldite is a member of the pumpellyite mineral series, a series of minerals characterized by the chemical bonding of silica tetrahedra with alkali and transition metal cations. Julgoldites, along with more common minerals like epidote and vesuvianite, belong to the subclass of sorosilicates, the rock-forming minerals that contain SiO4 tetrahedra that share a common oxygen to form Si2O7 ions with a charge of 6− (Deer et al., 1996). Julgoldite has been recognized for its importance in low grade metamorphism, forming under shear stress accompanied by relatively low temperatures (Coombs, 1953). Julgoldite was named in honor of Professor Julian Royce Goldsmith (1918–1999) of the University of Chicago.

<span class="mw-page-title-main">Tsumebite</span>

Tsumebite is a rare phosphate mineral named in 1912 after the locality where it was first found, the Tsumeb mine in Namibia, well known to mineral collectors for the wide range of minerals found there. Tsumebite is a compound phosphate and sulfate of lead and copper, with hydroxyl, formula Pb2Cu(PO4)(SO4)(OH). There is a similar mineral called arsentsumebite, where the phosphate group PO4 is replaced by the arsenate group AsO4, giving the formula Pb2Cu(AsO4)(SO4)(OH). Both minerals are members of the brackebuschite group.

<span class="mw-page-title-main">Fluor-uvite</span>

Fluor-uvite is a tourmaline mineral with the chemical formula CaMg3(Al5Mg)(Si6O18)(BO3)3(OH)3F. It is a rare mineral that is found in calcium rich contact metamorphic rocks with increased amounts of boron. Uvite is trigonal hexagonal, which means that it has three equal length axes at 120 degrees, all perpendicular to its fourth axis which has a different length. Uvite is part of the space group 3m. Uvite's hardness has been measured to be 7.5 on the Mohs hardness scale. The color of uvite widely varies, depending on the sample, but is mostly deep green or brown. In regard to uvite's optical properties, it is uniaxial (-) and anisotropic, meaning that the velocity of light in the mineral depends on the path that it takes. In plane polarized light, uvite is colorless to pale yellow and shows weak pleochroism.

<span class="mw-page-title-main">Povondraite</span>

Povondraite is a rare silicate mineral from the tourmaline group with formula: NaFe3+3(Fe3+4,Mg2)(BO3)3Si6O18(OH)3O. It is a dark brown to black nearly opaque mineral with a resinous to splendent luster. It crystallizes in the trigonal crystal system as equant, distorted prisms with trigonal pyramid terminations.

<span class="mw-page-title-main">Hubeite</span> Sorosilicate mineral

The mineral hubeite, Ca
2
Mn2+
Fe3+
[Si
4
O
12
(OH)]·(H
2
O)
2
, is a sorosilicate of the Si
4
O
13
group. Structurally it also belongs to the Akatoreite group. It was found and named after the province of Hubei, China. It is common to iron ores in a mine of that region. It occurs mainly as aggregates of fan like crystals. It is dark to pale brown, has orange-brown streak and is vitreous. Hubeite has a hardness of 5.5 in the Mohs scale, one good cleavage and conchoidal fracture. It is triclinic with a space group of P1*. The structure of hubeite is very uncommon, and in fact there is only one other mineral that fits the Si
4
O
13
group, which is ruizite.

Scandiobabingtonite was first discovered in the Montecatini granite quarry near Baveno, Italy in a pegmatite cavity. Though found in pegmatites, the crystals of scandiobabingtonite are sub-millimeter sized, and are tabular shaped. Scandiobabingtonite was the sixth naturally occurring mineral discovered with the rare earth element scandium, and grows around babingtonite, with which it is isostructural, hence the namesake. It is also referred to as scandian babingtonite. The ideal chemical formula for scandiobabingtonite is Ca2(Fe2+,Mn)ScSi5O14(OH).

<span class="mw-page-title-main">Schiavinatoite</span>

Schiavinatoite is a very rare mineral, a natural niobium borate with the chemical formula (Nb,Ta)BO4. Schiavinatoite is classified as monoborate. It contains tetrahedral borate anion instead of planar BO3 group, which is more common among minerals. Schiavinatoite is one of the most simple niobium minerals. It forms a solid solution with its tantalum-analogue, béhierite. Both minerals possess zircon-type structure (tetragonal, space group I41/amd) and occur in pegmatites. Schiavinatoite and nioboholtite are minerals with essential niobium and boron.

<span class="mw-page-title-main">Béhierite</span>

Béhierite is a very rare mineral, a natural tantalum borate of the formula (Ta,Nb)BO4. Béhierite is also one of the most simple tantalum minerals. It contains simple tetrahedral borate anions, instead of more common among minerals, planar BO3 groups. It forms a solid solution with its niobium-analogue, schiavinatoite. Both have zircon-type structure (tetragonal, space group I41/amd) and are found in pegmatites. Béhierite and holtite are minerals with essential tantalum and boron.

Tsilaisite is a manganese rich variety of elbaite tourmaline. It is also known as Tsilaizite. Tsilaisite is related Fluor-tsilaisite. The gem is named after the location it was first found.

<span class="mw-page-title-main">Foitite</span> Tourmaline mineral

Foitite is a mineral in the tourmaline group, it is a vacancy-dominant member of the group. Foitite is in the 'vacancy' group, due to the absence of atoms in the X site.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 3 4 5 6 7 American Mineralogist (1977) 62:1121
  3. 1 2 3 4 5 6 7 8 Gaines et al (1997) Dana’s New Mineralogy. Wiley
  4. 1 2 3 "Liddicoatite". www.mindat.org.
  5. 1 2 3 "Liddicoatite Mineral Data". www.webmineral.com.
  6. 1 2 3 4 "Liddicoatite" (PDF). University of Arizona . Mineral Data Publishing. 2001. Archived (PDF) from the original on 2006-09-05.
  7. Darrell J. Henry; Milan Novák; Frank C. Hawthorne; Andreas Ertl; Barbara L. Dutrow; Pavel Uher; Federico Pezzotta (2011). "Nomenclature of the tourmaline-supergroup minerals" (PDF). American Mineralogist. 96 (5–6): 895–913. Bibcode:2011AmMin..96..895H. doi:10.2138/am.2011.3636. S2CID   38696645. Archived from the original (PDF) on 2012-03-26. Retrieved 2012-04-18.
  8. Aurisicchio, C., Demartin, F., Ottolini, L. & Pezzotta, F. (1999). "Homogeneous liddicoatite from Madagascar. A possible reference material? First EMPA, SIMS, and SREF data". European Journal of Mineralogy. 11 (2): 237–242. Bibcode:1999EJMin..11..237A. doi:10.1127/ejm/11/2/0237.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  9. Breaks, F.W.; Tindle, A.G. & Selway, J.B. (2008). Electron microprobe and bulk rock and mineral compositions from rare-element pegmatites and peraluminous, S-type granitic rocks from the Fort Hope pegmatite field, north-central Superior Province of Ontario. Vol. 235. Ontario Geological Survey, Miscellaneous Release Data.
  10. 1 2 Deer, Howie and Zussman (1986) Rock-forming minerals, (2nd edition), Volume 1B, Disilicates and Ring Silicates
  11. American Mineralogist (1948) 33:532
  12. 1 2 extraLapis English No 3: Tourmaline (2002)
  13. The Mineralogical Record (2006) 37-5:482
  14. 1 2 The Mineralogical Record (2007) 38-3:220