Organoyttrium chemistry

Last updated
Structure of Y(CH(tms)2)3 (tms = SiMe3). AYOZIX.png
Structure of Y(CH(tms)2)3 (tms = SiMe3).

Organoyttrium chemistry is the study of compounds containing carbon-yttrium bonds. These compounds are almost invariably formal Y3+ derivatives, are generally diamagnetic and colorless, a consequence of the closed-shell configuration of the trication. [2] Organoyttrium compounds are mainly of academic interest.

Organoytrium compounds are often prepared by alkylation of YCl
3
. [3]

Related Research Articles

<span class="mw-page-title-main">Lanthanum</span> Chemical element, symbol La and atomic number 57

Lanthanum is a chemical element; it has symbol La and atomic number 57. It is a soft, ductile, silvery-white metal that tarnishes slowly when exposed to air. It is the eponym of the lanthanide series, a group of 15 similar elements between lanthanum and lutetium in the periodic table, of which lanthanum is the first and the prototype. Lanthanum is traditionally counted among the rare earth elements. Like most other rare earth elements, the usual oxidation state is +3, although some compounds are known with oxidation state +2. Lanthanum has no biological role in humans but is essential to some bacteria. It is not particularly toxic to humans but does show some antimicrobial activity.

The lanthanide or lanthanoid series of chemical elements comprises the 14 metallic chemical elements with atomic numbers 57–70, from lanthanum through ytterbium. Lutetium is also sometimes considered a lanthanide, despite being a d-block element and a transition metal. These elements are often collectively known as the rare-earth elements or rare-earth metals.

<span class="mw-page-title-main">Terbium</span> Chemical element, symbol Tb and atomic number 65

Terbium is a chemical element; it has symbol Tb and atomic number 65. It is a silvery-white, rare earth metal that is malleable, and ductile. The ninth member of the lanthanide series, terbium is a fairly electropositive metal that reacts with water, evolving hydrogen gas. Terbium is never found in nature as a free element, but it is contained in many minerals, including cerite, gadolinite, monazite, xenotime and euxenite.

<span class="mw-page-title-main">Praseodymium</span> Chemical element, symbol Pr and atomic number 59

Praseodymium is a chemical element; it has symbol Pr and the atomic number 59. It is the third member of the lanthanide series and is considered one of the rare-earth metals. It is a soft, silvery, malleable and ductile metal, valued for its magnetic, electrical, chemical, and optical properties. It is too reactive to be found in native form, and pure praseodymium metal slowly develops a green oxide coating when exposed to air.

<span class="mw-page-title-main">Thorium dioxide</span> Chemical compound

Thorium dioxide (ThO2), also called thorium(IV) oxide, is a crystalline solid, often white or yellow in colour. Also known as thoria, it is produced mainly as a by-product of lanthanide and uranium production. Thorianite is the name of the mineralogical form of thorium dioxide. It is moderately rare and crystallizes in an isometric system. The melting point of thorium oxide is 3300 °C – the highest of all known oxides. Only a few elements (including tungsten and carbon) and a few compounds (including tantalum carbide) have higher melting points. All thorium compounds, including the dioxide, are radioactive because there are no stable isotopes of thorium.

<span class="mw-page-title-main">Carl Gustaf Mosander</span> Swedish chemist

Carl Gustaf Mosander was a Swedish chemist. He discovered the rare earth elements lanthanum, erbium and terbium.

<span class="mw-page-title-main">Cerium(IV) sulfate</span> Chemical compound

Cerium(IV) sulfate, also called ceric sulfate, is an inorganic compound. It exists as the anhydrous salt Ce(SO4)2 as well as a few hydrated forms: Ce(SO4)2(H2O)x, with x equal to 4, 8, or 12. These salts are yellow to yellow/orange solids that are moderately soluble in water and dilute acids. Its neutral solutions slowly decompose, depositing the light yellow oxide CeO2. Solutions of ceric sulfate have a strong yellow color. The tetrahydrate loses water when heated to 180-200 °C.

<span class="mw-page-title-main">Cerium(III) chloride</span> Chemical compound

Cerium(III) chloride (CeCl3), also known as cerous chloride or cerium trichloride, is a compound of cerium and chlorine. It is a white hygroscopic salt; it rapidly absorbs water on exposure to moist air to form a hydrate, which appears to be of variable composition, though the heptahydrate CeCl3·7H2O is known. It is highly soluble in water, and (when anhydrous) it is soluble in ethanol and acetone.

<span class="mw-page-title-main">Yttrium(III) oxide</span> Chemical compound

Yttrium oxide, also known as yttria, is Y2O3. It is an air-stable, white solid substance.

<span class="mw-page-title-main">Erbium(III) chloride</span> Chemical compound

Erbium(III) chloride is a violet solid with the formula ErCl3. It is used in the preparation of erbium metal.

<span class="mw-page-title-main">Yttrium(III) chloride</span> Chemical compound

Yttrium(III) chloride is an inorganic compound of yttrium and chloride. It exists in two forms, the hydrate (YCl3(H2O)6) and an anhydrous form (YCl3). Both are colourless salts that are highly soluble in water and deliquescent.

<span class="mw-page-title-main">Cerium(III) bromide</span> Chemical compound

Cerium(III) bromide is an inorganic compound with the formula CeBr3. This white hygroscopic solid is of interest as a component of scintillation counters.

<span class="mw-page-title-main">Yttrium</span> Chemical element, symbol Y and atomic number 39

Yttrium is a chemical element; it has symbol Y and atomic number 39. It is a silvery-metallic transition metal chemically similar to the lanthanides and has often been classified as a "rare-earth element". Yttrium is almost always found in combination with lanthanide elements in rare-earth minerals and is never found in nature as a free element. 89Y is the only stable isotope and the only isotope found in the Earth's crust.

<span class="mw-page-title-main">Uranyl carbonate</span> Chemical compound

Uranyl carbonate refers to the inorganic compound with the formula UO2CO3. Also known by its mineral name rutherfordine, this material consists of uranyl (UO22+) and carbonate (CO32-). Like most uranyl salts, the compound is a polymeric, each uranium(VI) center being bonded to eight O atoms. Hydrolysis products of rutherfordine are also found in both the mineral and organic fractions of coal and its fly ash and is the main component of uranium in mine tailing seepage water.

<span class="mw-page-title-main">Cerium</span> Chemical element, symbol Ce and atomic number 58

Cerium is a chemical element; it has symbol Ce and atomic number 58. Cerium is a soft, ductile, and silvery-white metal that tarnishes when exposed to air. Cerium is the second element in the lanthanide series, and while it often shows the oxidation state of +3 characteristic of the series, it also has a stable +4 state that does not oxidize water. It is also considered one of the rare-earth elements. Cerium has no known biological role in humans but is not particularly toxic, except with intense or continued exposure.

Cerium(III) iodide (CeI3) is the compound formed by cerium(III) cations and iodide anions.

<span class="mw-page-title-main">Pyrosilicate</span> Chemical compound

A pyrosilicate is a type of chemical compound; either an ionic compound that contains the pyrosilicate anionSi
2
O6−
7
, or an organic compound with the hexavalent ≡O
3
Si
-O-SiO
3
≡ group. The anion is also called disilicate or diorthosilicate.

<span class="mw-page-title-main">Cerium(IV) fluoride</span> Chemical compound

Cerium(IV) fluoride is an inorganic compound with a chemical formula CeF4. It is a strong oxidant that appears as a white crystalline material. Cerium(IV) fluoride has an anhydrous form and a monohydrate form.

<span class="mw-page-title-main">Lutetium(III) iodide</span> Chemical compound

Lutetium(III) iodide or lutetium iodide is an inorganic compound consisting of iodine and lutetium, with the chemical formula of LuI3.

Cerium compounds are compounds containing the element cerium (Ce), a lanthanide. Cerium exists in two main oxidation states, Ce(III) and Ce(IV). This pair of adjacent oxidation states dominates several aspects of the chemistry of this element. Cerium(IV) aqueous solutions may be prepared by reacting cerium(III) solutions with the strong oxidizing agents peroxodisulfate or bismuthate. The value of E(Ce4+/Ce3+) varies widely depending on conditions due to the relative ease of complexation and hydrolysis with various anions, although +1.72 V is representative. Cerium is the only lanthanide which has important aqueous and coordination chemistry in the +4 oxidation state.

References

  1. Avent, Anthony G.; Caro, Catherine. F.; Hitchcock, Peter B.; Lappert, Michael F.; Li, Zhengning; Wei, Xue-Hong (2004). "Synthetic and structural experiments on yttrium, cerium and magnesium trimethylsilylmethyls and their reaction products with nitriles; with a note on two cerium β-diketiminates". Dalton Trans (10): 1567–1577. doi:10.1039/b316695n. PMID   15252606.
  2. Schumann, H.; Fedushkin, I. L. (2006). "Scandium, Yttrium & The Lanthanides: Organometallic Chemistry". Encyclopedia of Inorganic Chemistry. John Wiley & Sons. doi:10.1002/0470862106.ia212.
  3. King, R. (2005). Encyclopedia of Inorganic Chemistry [10 Volumes]. Wiley. pp. 4238–4290. ISBN   9780470860786.