Organosulfur chemistry

Last updated

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. [1] They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two (cysteine and methionine) are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

Contents

Sulfur shares the chalcogen group with oxygen, selenium, and tellurium, and it is expected that organosulfur compounds have similarities with carbon–oxygen, carbon–selenium, and carbon–tellurium compounds.

A classical chemical test for the detection of sulfur compounds is the Carius halogen method.

Structural classes

Organosulfur compounds can be classified according to the sulfur-containing functional groups, which are listed (approximately) in decreasing order of their occurrence.

Sulfides

Sulfides, formerly known as thioethers, are characterized by C−S−C bonds [3] [4] Relative to C−C bonds, C−S bonds are both longer, because sulfur atoms are larger than carbon atoms, and about 10% weaker. Representative bond lengths in sulfur compounds are 183  pm for the S−C single bond in methanethiol and 173 pm in thiophene. The C−S bond dissociation energy for thiomethane is 89 kcal/mol (370 kJ/mol) compared to methane's 100 kcal/mol (420 kJ/mol) and when hydrogen is replaced by a methyl group the energy decreases to 73 kcal/mol (305 kJ/mol). [5] The single carbon to oxygen bond is shorter than that of the C−C bond. The bond dissociation energies for dimethyl sulfide and dimethyl ether are respectively 73 and 77 kcal/mol (305 and 322 kJ/mol).

Sulfides are typically prepared by alkylation of thiols. Alkylating agents include not only alkyl halides, but also epoxides, aziridines, and Michael acceptors. [6]

They can also be prepared via the Pummerer rearrangement.

In the Ferrario reaction, phenyl ether is converted to phenoxathiin by action of elemental sulfur and aluminium chloride. [7]

Ferrario reaction.svg

Thioacetals and thioketals feature C−S−C−S−C bond sequence. They represent a subclass of sulfides. The thioacetals are useful in "umpolung" of carbonyl groups. Thioacetals and thioketals can also be used to protect a carbonyl group in organic syntheses.

The above classes of sulfur compounds also exist in saturated and unsaturated heterocyclic structures, often in combination with other heteroatoms, as illustrated by thiiranes, thiirenes, thietanes, thietes, dithietanes, thiolanes, thianes, dithianes, thiepanes, thiepines, thiazoles, isothiazoles, and thiophenes, among others. The latter three compounds represent a special class of sulfur-containing heterocycles that are aromatic. The resonance stabilization of thiophene is 29 kcal/mol (121 kJ/mol) compared to 20 kcal/mol (84 kJ/mol) for the oxygen analogue furan. The reason for this difference is the higher electronegativity for oxygen drawing away electrons to itself at the expense of the aromatic ring current. Yet as an aromatic substituent the thio group is less electron-releasing than the alkoxy group. Dibenzothiophenes (see drawing), tricyclic heterocycles consisting of two benzene rings fused to a central thiophene ring, occurs widely in heavier fractions of petroleum.

Thiols, disulfides, polysulfides

Thiol groups contain the functionality R−SH. Thiols are structurally similar to the alcohol group, but these functionalities are very different in their chemical properties. Thiols are more nucleophilic, more acidic, and more readily oxidized. This acidity can differ by 5 pKa units. [8]

The difference in electronegativity between sulfur (2.58) and hydrogen (2.20) is small and therefore hydrogen bonding in thiols is not prominent. Aliphatic thiols form monolayers on gold, which are topical in nanotechnology.

Certain aromatic thiols can be accessed through a Herz reaction.

Disulfides R−S−S−R with a covalent sulfur to sulfur bond are important for crosslinking: in biochemistry for the folding and stability of some proteins and in polymer chemistry for the crosslinking of rubber.

Longer sulfur chains are also known, such as in the natural product varacin which contains an unusual pentathiepin ring (5-sulfur chain cyclised onto a benzene ring).

Thioesters

Thioesters have general structure R−C(O)−S−R. They are related to regular esters (R−C(O)−O−R) but are more susceptible to hydrolysis and related reactions. Thioesters formed from coenzyme A are prominent in biochemistry, especially in fatty acid synthesis.

Sulfoxides, sulfones and thiosulfinates

A sulfoxide, R−S(O)−R, is the S-oxide of a sulfide ("sulfide oxide"), a sulfone, R−S(O)2−R, is the S,S-dioxide of a sulfide, a thiosulfinate, R−S(O)−S−R, is the S-oxide of a disulfide, and a thiosulfonate, R−S(O)2−S−R, is the S,S-dioxide of a disulfide. All of these compounds are well known with extensive chemistry, e.g., dimethyl sulfoxide, dimethyl sulfone, and allicin (see drawing).

Sulfimides, sulfoximides, sulfonediimines

Sulfimides (also called a sulfilimines) are sulfur–nitrogen compounds of structure R2S=NR′, the nitrogen analog of sulfoxides. They are of interest in part due to their pharmacological properties. When two different R groups are attached to sulfur, sulfimides are chiral. Sulfimides form stable α-carbanions. [9]

Sulfoximides (also called sulfoximines) are tetracoordinate sulfur–nitrogen compounds, isoelectronic with sulfones, in which one oxygen atom of the sulfone is replaced by a substituted nitrogen atom, e.g., R2S(O)=NR′. When two different R groups are attached to sulfur, sulfoximides are chiral. Much of the interest in this class of compounds is derived from the discovery that methionine sulfoximide (methionine sulfoximine) is an inhibitor of glutamine synthetase. [10]

Sulfonediimines (also called sulfodiimines, sulfodiimides or sulfonediimides) are tetracoordinate sulfur–nitrogen compounds, isoelectronic with sulfones, in which both oxygen atoms of the sulfone are replaced by a substituted nitrogen atom, e.g., R2S(=NR′)2. They are of interest because of their biological activity and as building blocks for heterocycle synthesis. [11]

S-Nitrosothiols

S-Nitrosothiols, also known as thionitrites, are compounds containing a nitroso group attached to the sulfur atom of a thiol, e.g. R−S−N=O. They have received considerable attention in biochemistry because they serve as donors of the nitrosonium ion, NO+, and nitric oxide, NO, which may serve as signaling molecules in living systems, especially related to vasodilation. [12]

Sulfur halides

A wide range of organosulfur compounds are known which contain one or more halogen atom ("X" in the chemical formulas that follow) bonded to a single sulfur atom, e.g.: sulfenyl halides, RSX; sulfinyl halides, RS(O)X; sulfonyl halides, RSO2X; alkyl and arylsulfur trichlorides, RSCl3 and trifluorides, RSF3; [13] and alkyl and arylsulfur pentafluorides, RSF5. [14] Less well known are dialkylsulfur tetrahalides, mainly represented by the tetrafluorides, e.g., R2SF4. [15]

Compounds with double bonds between carbon and sulfur are relatively uncommon, but include the important compounds carbon disulfide, carbonyl sulfide, and thiophosgene. Thioketones (RC(=S)R′) are uncommon with alkyl substituents, but one example is thiobenzophenone. Thioaldehydes are rarer still, reflecting their lack of steric protection ("thioformaldehyde" exists as a cyclic trimer). Thioamides, with the formula R1C(=S)N(R2)R3 are more common. They are typically prepared by the reaction of amides with Lawesson's reagent. Isothiocyanates, with formula R−N=C=S, are found naturally. Vegetable foods with characteristic flavors due to isothiocyanates include wasabi, horseradish, mustard, radish, Brussels sprouts, watercress, nasturtiums, and capers.

S-Oxides and S,S-dioxides of thiocarbonyl compounds

The S-oxides of thiocarbonyl compounds are known as thiocarbonyl S-oxides: (R2C=S=O, and thiocarbonyl S,S-dioxides or sulfenes, R2C=SO2). The thione S-oxides have also been known as sulfines, and while IUPAC considers this term obsolete, [16] the name persists in the literature. [17] These compounds are well known with extensive chemistry. [18] [19] Examples include syn-propanethial-S-oxide and sulfene.

Triple bonds between carbon and sulfur

Triple bonds between sulfur and carbon in sulfaalkynes are rare and can be found in carbon monosulfide (CS) [20] and have been suggested for the compounds F3CCSF3 [21] [22] and F5SCSF3. [23] The compound HCSOH is also represented as having a formal triple bond. [24]

Thiocarboxylic acids and thioamides

Thiocarboxylic acids (RC(O)SH) and dithiocarboxylic acids (RC(S)SH) are well known. They are structurally similar to carboxylic acids but more acidic. Thioamides are analogous to amides.

Sulfonic acids have functionality R−S(=O)2−OH. [25] They are strong acids that are typically soluble in organic solvents. Sulfonic acids like trifluoromethanesulfonic acid is a frequently used reagent in organic chemistry. Sulfinic acids have functionality R−S(O)−OH while sulfenic acids have functionality R−S−OH. In the series sulfonic—sulfinic—sulfenic acids, both the acid strength and stability diminish in that order. [26] [27] Sulfonamides, sulfinamides and sulfenamides, with formulas R−SO2NR′2, R−S(O)NR′2, and R−SNR′2, respectively, each have a rich chemistry. For example, sulfa drugs are sulfonamides derived from aromatic sulfonation. Chiral sulfinamides are used in asymmetric synthesis, while sulfenamides are used extensively in the vulcanization process to assist cross-linking. Thiocyanates, R−S−CN, are related to sulfenyl halides and esters in terms of reactivity.

A sulfonium ion is a positively charged ion featuring three organic substituents attached to sulfur, with the formula [R3S]+. Together with their negatively charged counterpart, the anion, the compounds are called sulfonium salts. An oxosulfonium ion is a positively charged ion featuring three organic substituents and an oxygen attached to sulfur, with the formula [R3S=O]+. Together with their negatively charged counterpart, the anion, the compounds are called oxosulfonium salts. Related species include alkoxysulfonium and chlorosulfonium ions, [R2SOR]+ and [R2SCl]+, respectively.

Sulfonium, oxosulfonium and thiocarbonyl ylides

Deprotonation of sulfonium and oxosulfonium salts affords ylides, of structure R2S+−C−R′2 and R2S(O)+−C−R′2. While sulfonium ylides, for instance in the Johnson–Corey–Chaykovsky reaction used to synthesize epoxides, are sometimes drawn with a C=S double bond, e.g., R2S=CR′2, the ylidic carbon–sulfur bond is highly polarized and is better described as being ionic. Sulfonium ylides are key intermediates in the synthetically useful Stevens rearrangement. Thiocarbonyl ylides (RR′C=S+−C−RR′) can form by ring-opening of thiiranes, photocyclization of aryl vinyl sulfides, [28] as well as by other processes.

Sulfuranes and persulfuranes

Sulfuranes are relatively specialized functional group that feature tetravalent sulfur, with the formula SR4 [2] Likewise, persulfuranes feature hexavalent SR6.

One of the few all-carbon persulfuranes has two methyl and two biphenylene ligands: [29]

AllCarbonPersulfurane.svg

It is prepared from the corresponding sulfurane 1 with xenon difluoride / boron trifluoride in acetonitrile to the sulfuranyl dication 2 followed by reaction with methyllithium in tetrahydrofuran to (a stable) persulfurane 3 as the cis isomer. X-ray diffraction shows C−S bond lengths ranging between 189 and 193 pm (longer than the standard bond length) with the central sulfur atom in a distorted octahedral molecular geometry.

Organosulfur compounds in nature

A variety of organosulfur compounds occur in nature. Most abundant are the amino acids methionine, cysteine, and cystine. The vitamins biotin and thiamine, as well as lipoic acid contain sulfur heterocycles. Glutathione is the primary intracellular antioxidant. [6] Penicillin and cephalosporin are life-saving antibiotics, derived from fungi. Gliotoxin is a sulfur-containing mycotoxin produced by several species of fungi under investigation as an antiviral agent.

In fossil fuels

Common organosulfur compounds present in petroleum fractions at the level of 200–500 ppm. Common compounds are thiophenes, especially dibenzothiophenes. By the process of hydrodesulfurization (HDS) in refineries, these compounds are removed as illustrated by the hydrogenolysis of thiophene: C4H4S + 8 H2 → C4H10 + H2S

Flavor and odor

Compounds like allicin and ajoene are responsible for the odor of garlic. Lenthionine contributes to the flavor of shiitake mushrooms. Volatile organosulfur compounds also contribute subtle flavor characteristics to wine, nuts, cheddar cheese, chocolate, coffee, and tropical fruit flavors. [30] Many of these natural products also have important medicinal properties such as preventing platelet aggregation or fighting cancer.

Humans and other animals have an exquisitely sensitive sense of smell toward the odor of low-valent organosulfur compounds such as thiols, sulfides, and disulfides. Malodorous volatile thiols are protein-degradation products found in putrid food, so sensitive identification of these compounds is crucial to avoiding intoxication. Low-valent volatile sulfur compounds are also found in areas where oxygen levels in the air are low, posing a risk of suffocation.

Copper is required for the highly sensitive detection of certain volatile thiols and related organosulfur compounds by olfactory receptors in mice. Whether humans, too, require copper for sensitive detection of thiols is not yet known. [31]

Related Research Articles

<span class="mw-page-title-main">Sulfur</span> Chemical element, symbol S and atomic number 16

Sulfur (also spelled sulphur in British English) is a chemical element; it has symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with the chemical formula S8. Elemental sulfur is a bright yellow, crystalline solid at room temperature.

In chemistry, a disulfide is a compound containing a R−S−S−R′ functional group or the S2−
2
anion. The linkage is also called an SS-bond or sometimes a disulfide bridge and usually derived from two thiol groups.

<span class="mw-page-title-main">Thiol</span> Any organic compound having a sulfanyl group (–SH)

In organic chemistry, a thiol, or thiol derivative, is any organosulfur compound of the form R−SH, where R represents an alkyl or other organic substituent. The −SH functional group itself is referred to as either a thiol group or a sulfhydryl group, or a sulfanyl group. Thiols are the sulfur analogue of alcohols, and the word is a blend of "thio-" with "alcohol".

<span class="mw-page-title-main">Organic sulfide</span> Organic compound with an –S– group

In organic chemistry, a sulfide or thioether is an organosulfur functional group with the connectivity R−S−R' as shown on right. Like many other sulfur-containing compounds, volatile sulfides have foul odors. A sulfide is similar to an ether except that it contains a sulfur atom in place of the oxygen. The grouping of oxygen and sulfur in the periodic table suggests that the chemical properties of ethers and sulfides are somewhat similar, though the extent to which this is true in practice varies depending on the application.

<span class="mw-page-title-main">Thioester</span> Organosulfur compounds of the form R–SC(=O)–R’

In organic chemistry, thioesters are organosulfur compounds with the molecular structure R−C(=O)−S−R’. They are analogous to carboxylate esters with the sulfur in the thioester replacing oxygen in the carboxylate ester, as implied by the thio- prefix. They are the product of esterification of a carboxylic acid with a thiol. In biochemistry, the best-known thioesters are derivatives of coenzyme A, e.g., acetyl-CoA. The R and R' represent organyl groups, or H in the case of R.

Thiophene is a heterocyclic compound with the formula C4H4S. Consisting of a planar five-membered ring, it is aromatic as indicated by its extensive substitution reactions. It is a colorless liquid with a benzene-like odor. In most of its reactions, it resembles benzene. Compounds analogous to thiophene include furan (C4H4O), selenophene (C4H4Se) and pyrrole (C4H4NH), which each vary by the heteroatom in the ring.

<span class="mw-page-title-main">Sulfone</span> Organosulfur compound of the form >S(=O)2

In organic chemistry, a sulfone is a organosulfur compound containing a sulfonyl functional group attached to two carbon atoms. The central hexavalent sulfur atom is double-bonded to each of two oxygen atoms and has a single bond to each of two carbon atoms, usually in two separate hydrocarbon substituents.

<span class="mw-page-title-main">Sulfoxide</span> Organic compound containing a sulfinyl group (>SO)

In organic chemistry, a sulfoxide, also called a sulphoxide, is an organosulfur compound containing a sulfinyl functional group attached to two carbon atoms. It is a polar functional group. Sulfoxides are oxidized derivatives of sulfides. Examples of important sulfoxides are alliin, a precursor to the compound that gives freshly crushed garlic its aroma, and dimethyl sulfoxide (DMSO), a common solvent.

Sulfur compounds are chemical compounds formed the element sulfur (S). Common oxidation states of sulfur range from −2 to +6. Sulfur forms stable compounds with all elements except the noble gases.

<span class="mw-page-title-main">Thiophenol</span> Chemical compound

Thiophenol is an organosulfur compound with the formula C6H5SH, sometimes abbreviated as PhSH. This foul-smelling colorless liquid is the simplest aromatic thiol. The chemical structures of thiophenol and its derivatives are analogous to phenols. An exception is the oxygen atom in the hydroxyl group (-OH) bonded to the aromatic ring is replaced by a sulfur atom. The prefix thio- implies a sulfur-containing compound and when used before a root word name for a compound which would normally contain an oxygen atom, in the case of 'thiol' that the alcohol oxygen atom is replaced by a sulfur atom.

The Ramberg–Bäcklund reaction is an organic reaction converting an α-halo sulfone into an alkene in presence of a base with extrusion of sulfur dioxide. The reaction is named after the two Swedish chemists Ludwig Ramberg and Birger Bäcklund. The carbanion formed by deprotonation gives an unstable episulfone that decomposes with elimination of sulfur dioxide. This elimination step is considered to be a concerted cheletropic extrusion.

<span class="mw-page-title-main">Sulfenic acid</span> Organosulfur compound of the form R–SOH

In chemistry, a sulfenic acid is an organosulfur compound and oxoacid with the general formula R−S−OH. It is the first member of the family of organosulfur oxoacids, which also include sulfinic acids and sulfonic acids, respectively. The base member of the sulfenic acid series with R = H is hydrogen thioperoxide.

In chemistry, persulfide refers to the functional group R-S-S-H. Persulfides are intermediates in the biosynthesis of iron-sulfur proteins and are invoked as precursors to hydrogen sulfide, a signaling molecule.

<span class="mw-page-title-main">Sulfenyl chloride</span> Chemical group (R–S–Cl)

In organosulfur chemistry, a sulfenyl chloride is a functional group with the connectivity R−S−Cl, where R is alkyl or aryl. Sulfenyl chlorides are reactive compounds that behave as sources of RS+. They are used in the formation of RS−N and RS−O bonds. According to IUPAC nomenclature they are named as alkyl thiohypochlorites, i.e. esters of thiohypochlorous acid.

<span class="mw-page-title-main">Thiosulfinate</span> Functional group

In organosulfur chemistry, thiosulfinate is a functional group consisting of the linkage R-S(O)-S-R. Thiolsulfinates are also named as alkanethiosulfinic acid esters.

In organic chemistry, thiocarboxylic acids or carbothioic acids are organosulfur compounds related to carboxylic acids by replacement of one of the oxygen atoms with a sulfur atom. Two tautomers are possible: a thione form and a thiol form. These are sometimes also referred to as "carbothioic O-acid" and "carbothioic S-acid" respectively. Of these the thiol form is most common.

<span class="mw-page-title-main">Sulfenamide</span> Molecules of the form >N–S–

In organosulfur chemistry, sulfenamides are a class of organosulfur compounds characterized by the general formula R−S−N(−R)2, where the R groups are hydrogen, alkyl, or aryl. Sulfenamides have been used extensively in the vulcanization of rubber using sulfur. They are related to the oxidized compounds known as sulfinamides and sulfonamides.

<span class="mw-page-title-main">Sulfinyl halide</span> Class of chemical compounds

Sulfinyl halide have the general formula R−S(O)−X, where X is a halogen. They are intermediate in oxidation level between sulfenyl halides, R−S−X, and sulfonyl halides, R−SO2−X. The best known examples are sulfinyl chlorides, thermolabile, moisture-sensitive compounds, which are useful intermediates for preparation of other sufinyl derivatives such as sulfinamides, sulfinates, sulfoxides, and thiosulfinates. Unlike the sulfur atom in sulfonyl halides and sulfenyl halides, the sulfur atom in sulfinyl halides is chiral, as shown for methanesulfinyl chloride.

<span class="mw-page-title-main">Bunte salt</span>

In organosulfur chemistry, a Bunte salt is an archaic name for salts with the formula RSSO3Na+. They are also called S-alkylthiosulfates or S-arylthiosulfates. These compounds are typically derived from alkylation on the pendant sulfur of sodium thiosulfate:

<span class="mw-page-title-main">Selenosulfide</span> Class of chemical compounds, both organic and inorganic, containing sulfur as well as selenium

In chemistry, a selenosulfide refers to distinct classes of inorganic and organic compounds containing sulfur and selenium. The organic derivatives contain Se-S bonds, whereas the inorganic derivatives are more variable.

References

  1. Block, E. (1978). Reactions of Organosulfur Compounds. Academic Press. ISBN   0-12-107050-6.
  2. 1 2 Martin, J. C.; Arhart, R. J.; Franz, J. A.; Perozzi, E. F.; Kaplan, L. J. "Bis[2,2,2-trifluoro-1-phenyl-1-(trifluoromethyl)ethoxy]diphenyl sulfurane". Organic Syntheses . 57: 22. doi:10.15227/orgsyn.057.0022 .
  3. Organic chemistry IUPAC Blue Book. Rules C-5: Compounds Containing Bivalent Sulfur http://www.acdlabs.com/iupac/nomenclature/79/r79_25.htm
  4. Organic chemistry IUPAC Blue Book. Recommendation R-5.7.1.3.4 Thiocarboxylic and thiocarbonic acids.
  5. Handbook of Chemistry and Physics (81st ed.). CRC Press. June 2000. ISBN   0-8493-0481-4.
  6. 1 2 Chauhan, Pankaj; Mahajan, Suruchi; Enders, Dieter (2014). "Organocatalytic Carbon–Sulfur Bond-Forming Reactions". Chemical Reviews. 114 (18): 8807–8864. doi:10.1021/cr500235v. PMID   25144663.
  7. Suter, C. M.; Maxwell, Charles E. (1938). "Phenoxthin [Phenoxathiin]". Organic Syntheses . 18: 64. doi:10.15227/orgsyn.018.0064 .
  8. Cremlyn, R. J. (1996). An Introduction to Organosulfur Chemistry. Chichester: John Wiley and Sons. ISBN   0-471-95512-4.
  9. García Ruano, J. L.; Cid, M. B.; Martín Castro, A. M.; Alemán, J. (2008). "Acyclic S,S-Dialkylsulfimides". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 352–375. ISBN   978-1-58890-530-7.
  10. Drabowicz, J.; Lewkowski, J.; Kudelska, W.; Girek, T. (2008). "S,S-Dialkylsulfoximides". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 154–173. ISBN   978-1-58890-530-7.
  11. Drabowicz, J.; Lewkowski, J.; Kudelska, W.; Girek, T. (2008). "S,S-Dialkylsulfonediimines". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 173–180. ISBN   978-1-58890-530-7.
  12. Zhang, Y.; Hogg, N. (2005). "S-Nitrosothiols: cellular formation and transport". Free Radic. Biol. Med. 38 (7): 831–838. doi:10.1016/j.freeradbiomed.2004.12.016. PMID   15749378.
  13. Braverman, S.; Cherkinsky, M.; Levinger, S. (2008). "Alkylsulfur Trihalides". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 187–188. ISBN   978-1-58890-530-7.
  14. Sheppard, W. A. (1962). "Arylsulfur Pentafluorides". J. Am. Chem. Soc. 84 (16): 3064–3072. doi:10.1021/ja00875a006.
  15. Drabowicz, J.; Lewkowski, J.; Kudelska, W.; Girek, T. (2008). "Dialkylsulfur Tetrahalides". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 123–124. ISBN   978-1-58890-530-7.
  16. IUPAC , Compendium of Chemical Terminology , 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006) " sulfines ". doi : 10.1351/goldbook.S06108
  17. McCaw, Patrick G.; Buckley, Naomi M.; Collins, Stuart G.; Maguire, Anita R. (March 2016). "Generation, Reactivity and Uses of Sulfines in Organic Synthesis". European Journal of Organic Chemistry. 2016 (9): 1630–1650. doi:10.1002/ejoc.201501538.
  18. Opitz, G. (February 1967). "Sulfines and Sulfenes– theS-Oxides andS,S-Dioxides of Thioaldehydes and Thioketones". Angewandte Chemie International Edition in English. 6 (2): 107–123. doi:10.1002/anie.196701071.
  19. Zwanenburg, Binne (May 1989). "Sulfine Chemistry". Phosphorus, Sulfur, and Silicon and the Related Elements. 43 (1–2): 1–24. doi:10.1080/10426508908040276.
  20. Moltzen, E. K.; Klabunde, K. J.; Senning, A. (1988). "Carbon monosulfide: a review". Chem. Rev. 88 (2): 391. doi:10.1021/cr00084a003.
  21. Pötter, B.; Seppelt, K. (1984). "Trifluoroethylidynesulfur Trifluoride, F3C−C≡SF3". Angew. Chem. Int. Ed. Engl. 23 (2): 150. doi:10.1002/anie.198401501.
  22. Buschmann, J.; Damerius, R.; Gerhardt, R.; Lentz, D.; Luger, P.; Marschall, R.; Preugschat, D.; Seppelt, K.; Simon, A. (1992). "(Trifluoroethylidyne)sulfur trifluoride, F3CC≡SF3: two solid-state structures and reactivity as a carbene". J. Am. Chem. Soc. 114 (24): 9465. doi:10.1021/ja00050a027.
  23. Gerhardt, R.; Gerlbig, T.; Buschamann, J.; Luger, P.; Seppelt, K. (1988). "The SF5-Unit as Steric Protecting Group; Synthesis and Structure of F5S−C≡SF3". Angew. Chem. Int. Ed. Engl. 27 (11): 1534. doi:10.1002/anie.198815341.
  24. Schreiner, P.; Reisenauer, H.; Romanski, J.; Mloston, G. (2009). "A formal carbon–sulfur triple bond: H−C≡S−O−H". Angew. Chem. Int. Ed. Engl. 48 (43): 8133–8136. doi:10.1002/anie.200903969. PMID   19768827.
  25. Organic chemistry IUPAC Blue Book. C-6 Sulfur Halides, Sulfoxides, Sulfones, and Sulfur Acids and Their Derivatives http://www.acdlabs.com/iupac/nomenclature/79/r79_26.htm
  26. Braverman, S.; Cherkinsky, M.; Levinger, S. (2008). "Alkanesulfinic Acids and Salts". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 196–211. ISBN   978-1-58890-530-7.
  27. Drabowicz, J.; Kiełbasiński, P.; Łyżwa, P.; Zając, A.; Mikołajczyk, M. (2008). "Alkanesulfenic Acids". In Kambe, N. (ed.). Science of Synthesis. Vol. 39. Thieme. pp. 550–557. ISBN   978-1-58890-530-7.
  28. Schultz, A. G.; DeTar, M. B. (1976). "Thiocarbonyl ylides. Photogeneration, rearrangement, and cycloaddition reactions". J. Am. Chem. Soc. 98 (12): 3564–3572. doi:10.1021/ja00428a029.
  29. Sato, S.; Matsunaga, K.; Horn, E.; Furukawa, N.; Nabeshima, T. (2006). "Isolation and Molecular Structure of the Organo-persulfuranes [12-S-6(C6)]". J. Am. Chem. Soc. 128 (21): 6778–6779. doi:10.1021/ja060497y. PMID   16719444.
  30. Qian, M. C.; Fan, X.; Mahattanatawee, K., eds. (2011). Volatile Sulfur Compounds in Food. ACS Symposium Series 1068. Vol. 1068. American Chemical Society. doi:10.1021/bk-2011-1068. ISBN   978-0-8412-2616-6.
  31. Duan, X.; Block, E.; Li, Z.; Connelly, T.; Zhang, J.; Huang, Z.; Su, X.; Pan, Y.; Wu, L.; Chi, Q.; Thomas, S.; Zhang, S.; Ma, M.; Matsunami, H.; Chen, G.-Q.; Zhang, H. (2012). "Crucial role of copper in detection of metal-coordinating odorants". Proc. Natl. Acad. Sci. USA. 109 (9): 3492–3497. Bibcode:2012PNAS..109.3492D. doi: 10.1073/pnas.1111297109 . PMC   3295281 . PMID   22328155.