Organolead chemistry

Last updated
A carbon-lead bond Organoleadlogo.png
A carbon–lead bond

Organolead chemistry is the scientific study of the synthesis and properties of organolead compounds, which are organometallic compounds containing a chemical bond between carbon and lead. The first organolead compound was hexaethyldilead (Pb2(C2H5)6), first synthesized in 1858. [1] Sharing the same group with carbon, lead is tetravalent.

Contents

Going down the carbon group the C–X (X = C, Si, Ge, Sn, Pb) bond becomes weaker and the bond length larger. The C–Pb bond in tetramethyllead is 222 pm long with a dissociation energy of 49 kcal/mol (204 kJ/mol). For comparison the C–Sn bond in tetramethyltin is 214 pm long with dissociation energy 71 kcal/mol (297 kJ/mol). The dominance of Pb(IV) in organolead chemistry is remarkable because inorganic lead compounds tend to have Pb(II) centers. The reason is that with inorganic lead compounds elements such as nitrogen, oxygen and the halides have a much higher electronegativity than lead itself and the partial positive charge on lead then leads to a stronger contraction of the 6s orbital than the 6p orbital making the 6s orbital inert; this is called the inert-pair effect. [2]

By far the organolead compound that has had the greatest impact is tetraethyllead, formerly used as an antiknock agent in gasoline intended for automobile internal combustion engines and still widely used in avgas for small aircraft. [3] The most important lead reagents for introducing lead are lead tetraacetate and lead(II) chloride.

The use of organoleads is limited partly due to their toxicity.

Synthesis

Organolead compounds can be derived from Grignard reagents and lead chloride. For example, methylmagnesium chloride reacts with lead chloride to tetramethyllead, a water-clear liquid with boiling point 110 °C and density 1.995 g/cm3. Reaction of a lead(II) source with sodium cyclopentadienide gives the lead metallocene, plumbocene.

Certain arene compounds react directly with lead tetraacetate to aryl lead compounds in an electrophilic aromatic substitution. For instance anisole with lead tetraacetate forms p-methoxyphenyllead triacetate: [4]

CH3OC6H5 + Pb(OAc)4 → CH3OC6H4Pb(OAc)3 + HOAc

The reaction is accelerated in the presence of dichloroacetic acid, which forms the lead(IV) dichloroacetate as an intermediate.

Other organolead compounds are the halides of the type RnPbX(4-n), sulfinates (RnPb(OSOR)(4−n)) and hydroxides (RnPb(OH)(4−n)). Typical reactions are: [5]

R
4
Pb
+ HCl → R3PbCl + RH
R
4
Pb
+ SO2 → R3PbO(SO)R
R3PbCl + 1/2Ag2O (aq) → R3PbOH + AgCl
R2PbCl2 + 2 OHR
2
Pb(OH)
2
+ 2 Cl

R
2
Pb(OH)
2
compounds are amphoteric. At pH lower than 8 they form R2Pb2+ ions and with pH higher than 10, R2Pb(OH)3 ions.

Derived from the hydroxides are the plumboxanes:

2 R3PbOH + Na → (R3Pb)2O + NaOH + 1/2 H2

which give access to polymeric alkoxides:

(R3Pb)2O + R'OH → 1/n (R3PbOR')n - n H2O

Reactions

The C–Pb bond is weak and for this reason homolytic cleavage of organolead compounds to free radicals is easy. In its anti-knocking capacity, its purpose is that of a radical initiator. General reaction types of aryl and vinyl organoleads are transmetalation for instance with boronic acids and acid-catalyzed heterocyclic cleavage. Organoleads find use in coupling reactions between arene compounds. They are more reactive than the likewise organotins and can therefore be used to synthesise sterically crowded biaryls.

In oxyplumbation, organolead alkoxides are added to polar alkenes:

H2C=CH-CN + (Et3PbOMe)n → MeO-CH2-HC(PbEt3)-CN → MeO-CH2-CH2-CN

The alkoxide is regenerated in the subsequent methanolysis and, therefore, acts as a catalyst.

Aryllead triacetates

The lead substituent in p-methoxyphenyllead triacetate is displaced by carbon nucleophiles, such as the phenol mesitol, exclusively at the aromatic ortho position: [6]

PhenolLeadphenyltriacetateReaction.png

The reaction requires the presence of a large excess of a coordinating amine such as pyridine which presumably binds to lead in the course of the reaction. The reaction is insensitive to radical scavengers and therefore a free radical mechanism can be ruled out. The reaction mechanism is likely to involve nucleophilic displacement of an acetate group by the phenolic group to a diorganolead intermediate which in some related reactions can be isolated. The second step is then akin to a Claisen rearrangement except that the reaction depends on the electrophilicity (hence the ortho preference) of the phenol.

The nucleophile can also be the carbanion of a β-dicarbonyl compound: [4]

ArylleadCaryllation.png

The carbanion forms by proton abstraction of the acidic α-proton by pyridine (now serving a double role) akin to the Knoevenagel condensation. This intermediate displaces an acetate ligand to a diorganolead compound and again these intermediates can be isolated with suitable reactants as unstable intermediates. The second step is reductive elimination with formation of a new C–C bond and lead(II) acetate.

Reactive intermediates

Organolead compounds form a variety of reactive intermediates such as lead free radicals:

Me3PbCl + Na (77 K) → Me3Pb.

and plumbylenes, the lead carbene counterparts:

Me3Pb-Pb-Me3 → [Me2Pb]
[Me2Pb] + (Me3Pb)2 → Me3Pb-Pb(Me)2-PbMe3
Me3Pb-Pb(Me)2-PbMe3 → Pb(0) + 2 Me4Pb

These intermediates break up by disproportionation.

Plumbylidines of the type RPb (formally Pb(I)) are ligands to other metals in LnMPbR compounds (compare to carbon metal carbynes).

Related Research Articles

<span class="mw-page-title-main">Carboxylic acid</span> Organic compound containing a –C(=O)OH group

In organic chemistry, a carboxylic acid is an organic acid that contains a carboxyl group attached to an R-group. The general formula of a carboxylic acid is often written as R−COOH or R−CO2H, sometimes as R−C(O)OH with R referring to an organyl group, or hydrogen, or other groups. Carboxylic acids occur widely. Important examples include the amino acids and fatty acids. Deprotonation of a carboxylic acid gives a carboxylate anion.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. These compounds contain a distinctive functional group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group or hydrogen in the case of formyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula R−C(=O)−, where R represents an organyl group or hydrogen. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

<span class="mw-page-title-main">Lead(II) chloride</span> Chemical compound

Lead(II) chloride (PbCl2) is an inorganic compound which is a white solid under ambient conditions. It is poorly soluble in water. Lead(II) chloride is one of the most important lead-based reagents. It also occurs naturally in the form of the mineral cotunnite.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

<i>n</i>-Butyllithium Chemical compound

n-Butyllithium C4H9Li (abbreviated n-BuLi) is an organolithium reagent. It is widely used as a polymerization initiator in the production of elastomers such as polybutadiene or styrene-butadiene-styrene (SBS). Also, it is broadly employed as a strong base (superbase) in the synthesis of organic compounds as in the pharmaceutical industry.

<span class="mw-page-title-main">Organosilicon chemistry</span> Organometallic compound containing carbon–silicon bonds

Organosilicon chemistry is the study of organometallic compounds containing carbon–silicon bonds, to which they are called organosilicon compounds. Most organosilicon compounds are similar to the ordinary organic compounds, being colourless, flammable, hydrophobic, and stable to air. Silicon carbide is an inorganic compound.

<span class="mw-page-title-main">Organomercury chemistry</span> Group of chemical compounds containing mercury

Organomercury chemistry refers to the study of organometallic compounds that contain mercury. Typically the Hg–C bond is stable toward air and moisture but sensitive to light. Important organomercury compounds are the methylmercury(II) cation, CH3Hg+; ethylmercury(II) cation, C2H5Hg+; dimethylmercury, (CH3)2Hg, diethylmercury and merbromin ("Mercurochrome"). Thiomersal is used as a preservative for vaccines and intravenous drugs.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Lead(IV) acetate</span> Organometallic compound (Pb(C2H3O2)4)

Lead(IV) acetate or lead tetraacetate is an metalorganic compound with chemical formula Pb(C2H3O2)4. It is a colorless solid that is soluble in nonpolar, organic solvents, indicating that it is not a salt. It is degraded by moisture and is typically stored with additional acetic acid. The compound is used in organic synthesis.

<span class="mw-page-title-main">Organotitanium chemistry</span>

Organotitanium chemistry is the science of organotitanium compounds describing their physical properties, synthesis, and reactions. Organotitanium compounds in organometallic chemistry contain carbon-titanium chemical bonds. They are reagents in organic chemistry and are involved in major industrial processes.

<span class="mw-page-title-main">Organoaluminium chemistry</span>

Organoaluminium chemistry is the study of compounds containing bonds between carbon and aluminium. It is one of the major themes within organometallic chemistry. Illustrative organoaluminium compounds are the dimer trimethylaluminium, the monomer triisobutylaluminium, and the titanium-aluminium compound called Tebbe's reagent. The behavior of organoaluminium compounds can be understood in terms of the polarity of the C−Al bond and the high Lewis acidity of the three-coordinated species. Industrially, these compounds are mainly used for the production of polyolefins.

<span class="mw-page-title-main">Trimethyltin chloride</span> Chemical compound

Trimethyltin chloride is an organotin compound with the formula (CH3)3SnCl. It is a white solid that is highly toxic and malodorous. It is susceptible to hydrolysis.

Organosodium chemistry is the chemistry of organometallic compounds containing a carbon to sodium chemical bond. The application of organosodium compounds in chemistry is limited in part due to competition from organolithium compounds, which are commercially available and exhibit more convenient reactivity.

<span class="mw-page-title-main">Organosilver chemistry</span> Study of chemical compounds containing carbon-silver chemical bonds

Organosilver chemistry is the study of organometallic compounds containing a carbon to silver chemical bond. The theme is less developed than organocopper chemistry.

Plumbocene is an organometallic compound of lead with the chemical formula Pb(C5H5)2. It is a member of the class of metallocenes. It is soluble in benzene, acetone, ether, and petroleum ether, and insoluble in water. Plumbocene is stable in cold water.

<span class="mw-page-title-main">Lead compounds</span> Type of compound

Compounds of lead exist with lead in two main oxidation states: +2 and +4. The former is more common. Inorganic lead(IV) compounds are typically strong oxidants or exist only in highly acidic solutions.

<span class="mw-page-title-main">Lead(IV) chloride</span> Chemical compound

Lead tetrachloride, also known as lead(IV) chloride, has the molecular formula PbCl4. It is a yellow, oily liquid which is stable below 0 °C, and decomposes at 50 °C. It has a tetrahedral configuration, with lead as the central atom. The Pb–Cl covalent bonds have been measured to be 247 pm and the bond energy is 243 kJ⋅mol−1.

<span class="mw-page-title-main">Transition-metal allyl complex</span>

Transition-metal allyl complexes are coordination complexes with allyl and its derivatives as ligands. Allyl is the radical with the connectivity CH2CHCH2, although as a ligand it is usually viewed as an allyl anion CH2=CH−CH2, which is usually described as two equivalent resonance structures.

<span class="mw-page-title-main">Plumbylene</span> Divalent organolead(II) analogues of carbenes

Plumbylenes (or plumbylidenes) are divalent organolead(II) analogues of carbenes, with the general chemical formula, R2Pb, where R denotes a substituent. Plumbylenes possess 6 electrons in their valence shell, and are considered open shell species.

References

  1. Main Group Metals in Organic Synthesis Yamamoto, Hisashi / Oshima, Koichiro (eds.) 2004 ISBN   3-527-30508-4
  2. Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya Ed. 1997
  3. "When will we see unleaded AvGas?" . Retrieved 2024-05-26.
  4. 1 2 Robert P. Kozyrod, John T. Pinhey (1984). "The C-Arylation of β-Dicarbonyl Compounds". Organic Syntheses . 62: 24. doi:10.15227/orgsyn.062.0024 .
  5. Elschenbroich, C.; Salzer, A. ”Organometallics : A Concise Introduction” (2nd Ed) (1992) Wiley-VCH: Weinheim. ISBN   3-527-28165-7
  6. Pinhey, J. T. (1996). "Organolead(IV) triacetates in organic synthesis". Pure Appl. Chem. 68 (4): 819–824. doi: 10.1351/pac199668040819 . S2CID   53494040.

Further reading