Anisole

Last updated
Anisole
Anisol.svg
Anisole-3D-balls.png
Anisole.jpg
Names
Preferred IUPAC name
Anisole [1]
Systematic IUPAC name
Methoxybenzene [1]
Other names
Methyl phenyl ether [1]
Phenoxymethane
Identifiers
3D model (JSmol)
506892
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.002.615 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-876-1
2964
KEGG
PubChem CID
RTECS number
  • BZ8050000
UNII
UN number 2222
  • InChI=1S/C7H8O/c1-8-7-5-3-2-4-6-7/h2-6H,1H3 Yes check.svgY
    Key: RDOXTESZEPMUJZ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C7H8O/c1-8-7-5-3-2-4-6-7/h2-6H,1H3
    Key: RDOXTESZEPMUJZ-UHFFFAOYAP
  • COc1ccccc1
Properties
C7H8O
Molar mass 108.140 g·mol−1
AppearanceColorless liquid
Density 0.995 g/cm3
Melting point −37 °C (−35 °F; 236 K)
Boiling point 154 °C (309 °F; 427 K)
Solubility Insoluble
−72.79×10−6 cm3/mol
Hazards
GHS labelling:
GHS-pictogram-flamme.svg GHS-pictogram-exclam.svg
Warning
H226, H315, H319
P210, P233, P240, P241, P242, P243, P264, P280, P302+P352, P303+P361+P353, P305+P351+P338, P321, P332+P313, P337+P313, P362, P370+P378, P403+P235, P501
NFPA 704 (fire diamond)
NFPA 704.svgHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 2: Must be moderately heated or exposed to relatively high ambient temperature before ignition can occur. Flash point between 38 and 93 °C (100 and 200 °F). E.g. diesel fuelInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
2
0
Lethal dose or concentration (LD, LC):
3700 mg/kg (rat, oral)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

Anisole, or methoxybenzene, is an organic compound with the formula CH3OC6H5. It is a colorless liquid with a smell reminiscent of anise seed, and in fact many of its derivatives are found in natural and artificial fragrances. The compound is mainly made synthetically and is a precursor to other synthetic compounds. Structurally, it is an ether (−O−) with a methyl (−CH3) and phenyl (−C6H5) group attached. Anisole is a standard reagent of both practical and pedagogical value. [2]

Contents

It can be prepared by the Williamson ether synthesis; sodium phenoxide is reacted with a methyl halide to yield anisole.

Reactivity

Anisole undergoes electrophilic aromatic substitution reaction at a faster speed than benzene, which in turn reacts more quickly than nitrobenzene. The methoxy group is an ortho/para directing group, which means that electrophilic substitution preferentially occurs at these three sites. The enhanced nucleophilicity of anisole vs. benzene reflects the influence of the methoxy group, which renders the ring more electron-rich. The methoxy group strongly affects the pi cloud of the ring as a mesomeric electron donor, more so than as an inductive electron withdrawing group despite the electronegativity of the oxygen. Stated more quantitatively, the Hammett constant for para-substitution of anisole is –0.27.

Illustrative of its nucleophilicity, anisole reacts with acetic anhydride to give 4-methoxyacetophenone:

CH3OC6H5 + (CH3CO)2OCH3OC6H4C(O)CH3 + CH3COOH

Unlike most acetophenones, but reflecting the influence of the methoxy group, methoxyacetophenone undergoes a second acetylation. Many related reactions have been demonstrated. For example, phosphorus pentasulfide (P4S10) converts anisole to Lawesson's reagent, [(CH3OC6H4)PS2]2. [3]

Also indicating an electron-rich ring, anisole readily forms π-complexes with metal carbonyls, e.g. Cr(η6-anisole)(CO)3. [4]

The ether linkage is highly stable, but the methyl group can be removed with strong acids, such as hydroiodic acid or boron trichloride: [5] :565–566

CH3OC6H5 + HIHOC6H5 + CH3I

Birch reduction of anisole gives 1-methoxycyclohexa-1,4-diene. [6]

Preparation

Anisole is prepared by methylation of sodium phenoxide with dimethyl sulfate or methyl chloride: [7] [5]

2 C6H5O Na+ + (CH3O)2SO2 → 2 C6H5OCH3 + Na2SO4

Applications

Anisole is a precursor to perfumes, insect pheromones, and pharmaceuticals. [5] For example, synthetic anethole is prepared from anisole.

Safety

Anisole is relatively nontoxic with an LD50 of 3700 mg/kg in rats. [8] Its main hazard is its flammability. [8]

In the board game Scrabble , the word "anisole" is the 39th-most-likely word (out of over 25,000 possibilities) for a "bingo"/"bonus", i.e. the deployment of all seven letters in one's own hand simultaneously. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Ether</span> Organic compounds made of alkyl/aryl groups bound to oxygen (R–O–R)

In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula R−O−R′, where R and R′ represent the alkyl or aryl groups. Ethers can again be classified into two varieties: if the alkyl or aryl groups are the same on both sides of the oxygen atom, then it is a simple or symmetrical ether, whereas if they are different, the ethers are called mixed or unsymmetrical ethers. A typical example of the first group is the solvent and anaesthetic diethyl ether, commonly referred to simply as "ether". Ethers are common in organic chemistry and even more prevalent in biochemistry, as they are common linkages in carbohydrates and lignin.

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Ketone</span> Organic compounds of the form >C=O

In organic chemistry, a ketone is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)−. The simplest ketone is acetone, with the formula (CH3)2CO. Many ketones are of great importance in biology and in industry. Examples include many sugars (ketoses), many steroids, and the solvent acetone.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

<span class="mw-page-title-main">Methoxy group</span> Chemical group (–OCH3)

In organic chemistry, a methoxy group is the functional group consisting of a methyl group bound to oxygen. This alkoxy group has the formula R−O−CH3.

<span class="mw-page-title-main">Sulfonium</span> Cation of the form [SR3]+

In organic chemistry, a sulfonium ion, also known as sulphonium ion or sulfanium ion, is a positively-charged ion featuring three organic substituents attached to sulfur. These organosulfur compounds have the formula [SR3]+. Together with a negatively-charged counterion, they give sulfonium salts. They are typically colorless solids that are soluble in organic solvent.

<span class="mw-page-title-main">Iron pentacarbonyl</span> Chemical compound

Iron pentacarbonyl, also known as iron carbonyl, is the compound with formula Fe(CO)5. Under standard conditions Fe(CO)5 is a free-flowing, straw-colored liquid with a pungent odour. Older samples appear darker. This compound is a common precursor to diverse iron compounds, including many that are useful in small scale organic synthesis.

<span class="mw-page-title-main">Lawesson's reagent</span> Chemical compound

Lawesson's reagent (LR) is a chemical compound used in organic synthesis as a thiation agent. Lawesson's reagent was first made popular by Sven-Olov Lawesson, who did not, however, invent it. Lawesson's reagent was first made in 1956 during a systematic study of the reactions of arenes with P4S10.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Diphenylmethane</span> Chemical compound

Diphenylmethane is an organic compound with the formula (C6H5)2CH2 (often abbreviated CH
2
Ph
2
). The compound consists of methane wherein two hydrogen atoms are replaced by two phenyl groups. It is a white solid.

<span class="mw-page-title-main">2,6-Lutidine</span> Chemical compound

2,6-Lutidine is a natural heterocyclic aromatic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivative of pyridine, all of which are referred to as lutidines. It is a colorless liquid with mildly basic properties and a pungent, noxious odor.

<span class="mw-page-title-main">Sodium phenoxide</span> Chemical Compound

Sodium phenoxide (sodium phenolate) is an organic compound with the formula NaOC6H5. It is a white crystalline solid. Its anion, phenoxide, also known as phenolate, is the conjugate base of phenol. It is used as a precursor to many other organic compounds, such as aryl ethers.

<span class="mw-page-title-main">Trimethylsilyl trifluoromethanesulfonate</span> Chemical compound

Trimethylsilyl trifluoromethanesulfonate (TMSOTf) is an organosilicon compound with the formula (CH3)3SiO3SCF3. It is a colorless moisture-sensitive liquid. It is the trifluoromethanesulfonate derivative of trimethylsilyl. It is mainly used to activate ketones and aldehydes in organic synthesis.

<span class="mw-page-title-main">Dichlorophenylphosphine</span> Chemical compound

Dichlorophenylphosphine is an organophosphorus compound with the formula C6H5PCl2. This colourless viscous liquid is commonly used in the synthesis of organophosphines.

Silylation is the introduction of one or more (usually) substituted silyl groups (R3Si) to a molecule. Silylations are core methods for production of organosilicon chemistry. Silanization involves similar methods but usually refers to attachment of silyl groups to solids.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

<span class="mw-page-title-main">Trimethyloxonium tetrafluoroborate</span> Chemical compound

Trimethyloxonium tetrafluoroborate is the organic compound with the formula [(CH3)3O]+[BF4]. This salt is a strong methylating agent, being a synthetic equivalent of CH+3. It is a white solid that rapidly decomposes upon exposure to atmospheric moisture, although it is robust enough to be weighed quickly without inert atmosphere protection. Triethyloxonium tetrafluoroborate is a closely related compound.

<span class="mw-page-title-main">Hexamethylbenzene</span> Chemical compound

Hexamethylbenzene, also known as mellitene, is a hydrocarbon with the molecular formula C12H18 and the condensed structural formula C6(CH3)6. It is an aromatic compound and a derivative of benzene, where benzene's six hydrogen atoms have each been replaced by a methyl group. In 1929, Kathleen Lonsdale reported the crystal structure of hexamethylbenzene, demonstrating that the central ring is hexagonal and flat and thereby ending an ongoing debate about the physical parameters of the benzene system. This was a historically significant result, both for the field of X-ray crystallography and for understanding aromaticity.

Pentamethylbenzene is an organic compound with the formula C6H(CH3)5. It is a colourless solid with a sweet odor. The compound is classified as an aromatic hydrocarbon. It is a relatively easily oxidized benzene derivative, with E1/2 of 1.95 V vs NHE.

<span class="mw-page-title-main">Phenol ether</span> O-alkyl derivative of phenol

In chemistry, a phenol ether (or aromatic ether) is an organic compound derived from phenol (C6H5OH), where the hydroxyl (-OH) group is substituted with an alkoxy (-OR) group. Usually phenol ethers are synthesized through the condensation of phenol and an organic alcohol; however, other known reactions regarding the synthesis of ethers can be applied to phenol ethers as well. Anisole (C6H5OCH3) is the simplest phenol ether, and is a versatile precursor for perfumes and pharmaceuticals. Vanillin and ethylvanillin are phenol ether derivatives commonly utilized in vanilla flavorings and fragrances, while diphenyl ether is commonly used as a synthetic geranium fragrance. Phenol ethers are part of the chemical structure of a variety of medications, including quinine, an antimalarial drug, and dextromethorphan, an over-the-counter cough suppressant.

References

  1. 1 2 3 Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. pp. 702–703. doi:10.1039/9781849733069-00648. ISBN   978-0-85404-182-4. Anisole, C6H5−O−CH3, is the only name in the class of ethers which is retained both as a preferred IUPAC name and for use in general nomenclature. For preferred IUPAC names, no substitution is allowed; for general nomenclature substitution is allowed on the ring and on the side chain under certain conditions (see P-34.1.1.4).
  2. Smith, Michael B.; March, Jerry (2007), Advanced Organic Chemistry: Reactions, Mechanisms, and Structure (6th ed.), New York: Wiley-Interscience, ISBN   978-0-471-72091-1
  3. I. Thomsen; K. Clausen; S. Scheibye; S.-O. Lawesson (1984). "Thiation with 2,4-Bis(4-Methoxyphenyl)-1,3,2,4-Dithiadiphosphetane 2,4-Disulfide: N-Methylthiopyrrolidone". Organic Syntheses. 62: 158. doi:10.15227/orgsyn.062.0158.
  4. E. Peter Kündig (2004). "Synthesis of Transition Metal η6-Arene Complexes". Topics Organomet Chem. Topics in Organometallic Chemistry. 7: 3–20. doi:10.1007/b94489. ISBN   978-3-540-01604-5.
  5. 1 2 3 Helmut Fiege; Heinz-Werner Voges; Toshikazu Hamamoto; Sumio Umemura; Tadao Iwata; Hisaya Miki; Yasuhiro Fujita; Hans-Josef Buysch; Dorothea Garbe. "Phenol Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a19_313.
  6. A. J. Birch and K. B. Chamberlain (1977). "Tricarbonyl[(2,3,4,5-η)-2,4-Cyclohexadien-1-one]Iron and Tricarbonyl[(1,2,3,4,5-η)-2-Methoxy-2,4-Cyclohexadien-1-yl]Iron(1+) Hexafluorophosphate(1−) from Anisole". Organic Syntheses. 57: 107. doi:10.15227/orgsyn.057.0107.
  7. G. S. Hiers and F. D. Hager (1929). "Anisole". Organic Syntheses . 9: 12. doi:10.15227/orgsyn.009.0012.
  8. 1 2 MSDS Archived July 1, 2010, at the Wayback Machine
  9. "Fun with analytics: Probabilities and Scrabble". www.illumine8.com. Retrieved 2023-12-08.