Organomolybdenum chemistry

Last updated
Structure of Mo(CH3)5, a simple organomolybdenum compound. DOSBIWoneRotamer.png
Structure of Mo(CH3)5, a simple organomolybdenum compound.

Organomolybdenum chemistry is the chemistry of chemical compounds with Mo-C bonds. The heavier group 6 elements molybdenum and tungsten form organometallic compounds similar to those in organochromium chemistry but higher oxidation states tend to be more common. [2]

Contents

Mo(0) and more reduced states

Molybdenum hexacarbonyl is the precursor to many substituted derivatives. It reacts with organolithium reagents to give anionic acyls which can be O-alkylated to give Fischer carbenes.

Structure of (mesitylene)molybdenum tricarbonyl. (Mesitylene)molybdenum tricarbonyl.png
Structure of (mesitylene)molybdenum tricarbonyl.

Mo(CO)6 reacts with arenes to give piano-stool complexes such as (mesitylene)molybdenum tricarbonyl. Cycloheptatrienemolybdenum tricarbonyl, which is related to (arene)Mo(CO)3, reacts with trityl salts to give the cycloheptatrienyl complex: [3]

(C7H8)Mo(CO)3 + (C6H5)3C+ → [(C7H7)Mo(CO)3]+ + (C6H5)3CH
Structure of Cycloheptatrienemolybdenum tricarbonyl. CHTMo(CO)3.png
Structure of Cycloheptatrienemolybdenum tricarbonyl.

Reduction of Mo(CO)6 gives [Mo(CO)5]2− which is formally Mo(-II). [4]

CO-free Mo(0) compounds tend to be more reducing and kinetically labile than the carbonyl complexes. [5] Examples include bis(benzene)molybdenum (Mo(C6H6)2) and tris(butadiene)molybdenum. Such compounds can be prepared by metal vapor synthesis and reductive routes from molybdenum(V) chloride. [6]

Mo(II)

Halogenation of Mo(CO)6 gives Mo(II) carbonyl halides, which are also versatile precursors. [7] One large collection of compounds have the formula (C5R5)Mo(CO)3X, derived from cyclopentadienylmolybdenum tricarbonyl dimer (X = halide, hydride, alkyl). [8]

Treating molybdenum(II) acetate with methyllithium gives Li4[Mo2(CH3)8].

Mo(IV)

With the formula of the type Cp2MoX2 molybdocene dichloride (X = Cl) and molybdocene dihydride (X = H) are both known as are ansa metallocene analogues.

Molybdocene dihydride. Cp2MoH2.png
Molybdocene dihydride.

Mo(V) and Mo(VI)

Mo(CH3)5, Mo(CH3)6, and salts of [Mo(CH3)7] are known. [5]

Oxo and imide (RN=) ligands are found in several high oxidation state organomolybdenum compounds. The complexes (C5R5)MoO2X are illustrative. [9] Schrock's Mo-based olefin metathesis catalysts feature molybdenum(VI) centers supported by alkoxide, alkylidene, and imido ligands. [10]

Molybdenum neopentylidyne complexes endowed with sterically demanding phenolates or branched fluorinated alkoxides are catalysts for alkyne metathesis. [11] However, preparation of these catalysts is problematic by the standard Schrock procedure. The trisalkoxide species 17 is active at room temperature. [12]

Cummins first Mo example.png

The related complex precursor complex 18 provides even greater opportunities, which is originally designed for the stoichiometric cleavage of dinitrogen. [13] [14] In fact, when treating complex 18 with DCM in toluene, the major species formed is a methylidyne complex 19 and a monochloride compound 20. [15] More importantly, the combination of complex 18 and DCM tolerates numerous polar groups. For instance, basic amines and sulfides, which deactivate the more Lewis acidic complex such as Schrock complex. Following by this original discovery, Moore and co-workers tried higher gem-dichlorides RCHCl2 as activating agents to increase the catalyst lifetime. [16] To reconvert the chloride byproduct, they added magnesium in reaction. Moreover, after ligand exchange to an electron deficient ligand such as p-nitrophenol, gave access to a very active catalyst 22, which was effective in many applications, particularly in polymer chemistry and material science. [17] On the other hand, alcoholysis of 21 with a tridentate ligand will lead to longer lifetime and better substrate scope. [18]

Mo(III) complex.png

Despite the favorable characteristics of such catalysts, complex 18 must be handled with great care. This compound is not only very sensitive to oxidation and hydrolysis, but even reactive enough to cleave molecular nitrogen.

Molybdenum nitride complexes with Ph3SiO ligands are practical and tolerant precatalyst for alkyne metathesis. [19] This result implied that molybdenum alkylidynes endowed with Ph3SiO ligands must be very active. To further increase the feasibility, stability and activity of these catalysts, they came up with an independent route to directly prepare the alkylidynes instead of their nitrile counterparts. By complexation with 1,10-phenanthroline, an air-stable compound 27 can be formed as precatalyst, which can be activated easily by MnCl2 or ZnCl2 in solvents. [20] As shown below, this route is highly scalable and practical.

Furstner practical catalyst system 2.png

Organotungsten compounds

Tungsten analogues of almost all organoMo compounds are known. Some notable examples include hexamethyltungsten and analogues of Schrock olefin metathesis catalysts.

Many tungsten-based alkyne metathesis catalysts are of the general type [X3W≡CR]. [21] Activity is manipulated by the ligands. A typical route to such catalysts entails treatment neopentyl Grignard reagent to tungsten(VI) precursor followed by net alcoholysis of the alkyl ligands. [22] Complex 3 can undergo a ligand exchange with lithium salts to generate Schrock type catalysts (complex 4). Another way to make complex 4 is via cleavage of internal alkyne by W(III) complex, such as 5. [23] [24] Complex 2, as well as 3, is unable to metathesize internal alkynes, the related pathway is shown right. In detail, compound 6 (when X is not OR) will react with two equivalent alkynes to form complex 7. Complex 7 will undergo an "associative path" to generate a metallabenzene complex 8. It will decompose to polymerized compounds or a cyclopentadienyl complex with a formally reduced tungsten center. Tungstenocenes, or tungsten-containing metallocenes, may be formed from these cyclopentadienyl complexes.

Preparation of Schrock catalyst and related transformation.png

The formal 12-electron count of the W(VI) center in Schrock catalyst represents an appreciable Lewis acidity, which seriously limits the scope of these catalysts. For example, Schrock catalyst is unable to metathesize substrates containing donor or basic sites such as amines, thio ethers or crown ether segments. Acid-sensitive groups such as acetals can be destroyed. Replacement of tert-butoxide ligands by fluorinated alkoxides increase the Lewis acidic character. To reach a balance, it is proposed that a heteroleptic push/pull environment around the tungsten center will work.(as shown below) [25] [26] [27] [28] [29] For example, complex 13 is highly active (with loading 1-2 mol% being sufficient) and compatible with many functional groups.

Applications

Mo-based catalysts are useful for olefin metathesis. [10]

Some commercially available Schrock catalysts. SchrockMetathesisCatalysts.png
Some commercially available Schrock catalysts.

Trisamidomolybdenum(VI) alkylidyne complexes catalyze alkyne metathesis. [30]

In the Kauffmann olefination, molybdenum(III) chloride and methyllithium form an organometallic complex capable of carbonyl olefination. [31]

Related Research Articles

<span class="mw-page-title-main">Organometallic chemistry</span> Study of organic compounds containing metal(s)

Organometallic chemistry is the study of organometallic compounds, chemical compounds containing at least one chemical bond between a carbon atom of an organic molecule and a metal, including alkali, alkaline earth, and transition metals, and sometimes broadened to include metalloids like boron, silicon, and selenium, as well. Aside from bonds to organyl fragments or molecules, bonds to 'inorganic' carbon, like carbon monoxide, cyanide, or carbide, are generally considered to be organometallic as well. Some related compounds such as transition metal hydrides and metal phosphine complexes are often included in discussions of organometallic compounds, though strictly speaking, they are not necessarily organometallic. The related but distinct term "metalorganic compound" refers to metal-containing compounds lacking direct metal-carbon bonds but which contain organic ligands. Metal β-diketonates, alkoxides, dialkylamides, and metal phosphine complexes are representative members of this class. The field of organometallic chemistry combines aspects of traditional inorganic and organic chemistry.

<span class="mw-page-title-main">Olefin metathesis</span> Organic reaction involving the breakup and reassembly of alkene double bonds

In organic chemistry, olefin metathesis is an organic reaction that entails the redistribution of fragments of alkenes (olefins) by the scission and regeneration of carbon-carbon double bonds. Because of the relative simplicity of olefin metathesis, it often creates fewer undesired by-products and hazardous wastes than alternative organic reactions. For their elucidation of the reaction mechanism and their discovery of a variety of highly active catalysts, Yves Chauvin, Robert H. Grubbs, and Richard R. Schrock were collectively awarded the 2005 Nobel Prize in Chemistry.

A transition metal carbene complex is an organometallic compound featuring a divalent organic ligand. The divalent organic ligand coordinated to the metal center is called a carbene. Carbene complexes for almost all transition metals have been reported. Many methods for synthesizing them and reactions utilizing them have been reported. The term carbene ligand is a formalism since many are not derived from carbenes and almost none exhibit the reactivity characteristic of carbenes. Described often as M=CR2, they represent a class of organic ligands intermediate between alkyls (−CR3) and carbynes (≡CR). They feature in some catalytic reactions, especially alkene metathesis, and are of value in the preparation of some fine chemicals.

<span class="mw-page-title-main">Alkyne metathesis</span>

Alkyne metathesis is an organic reaction that entails the redistribution of alkyne chemical bonds. The reaction requires metal catalysts. Mechanistic studies show that the conversion proceeds via the intermediacy of metal alkylidyne complexes. The reaction is related to olefin metathesis.

<span class="mw-page-title-main">Molybdenum hexacarbonyl</span> Chemical compound

Molybdenum hexacarbonyl (also called molybdenum carbonyl) is the chemical compound with the formula Mo(CO)6. This colorless solid, like its chromium, tungsten, and seaborgium analogues, is noteworthy as a volatile, air-stable derivative of a metal in its zero oxidation state.

<span class="mw-page-title-main">Richard R. Schrock</span> American chemist and Nobel laureate (born 1945)

Richard Royce Schrock is an American chemist and Nobel laureate recognized for his contributions to the olefin metathesis reaction used in organic chemistry.

Ring-closing metathesis (RCM) is a widely used variation of olefin metathesis in organic chemistry for the synthesis of various unsaturated rings via the intramolecular metathesis of two terminal alkenes, which forms the cycloalkene as the E- or Z- isomers and volatile ethylene.

<span class="mw-page-title-main">Titanocene dichloride</span> Chemical compound

Titanocene dichloride is the organotitanium compound with the formula (η5-C5H5)2TiCl2, commonly abbreviated as Cp2TiCl2. This metallocene is a common reagent in organometallic and organic synthesis. It exists as a bright red solid that slowly hydrolyzes in air. It shows antitumour activity and was the first non-platinum complex to undergo clinical trials as a chemotherapy drug.

<span class="mw-page-title-main">Dicobalt octacarbonyl</span> Chemical compound

Dicobalt octacarbonyl is an organocobalt compound with composition Co2(CO)8. This metal carbonyl is used as a reagent and catalyst in organometallic chemistry and organic synthesis, and is central to much known organocobalt chemistry. It is the parent member of a family of hydroformylation catalysts. Each molecule consists of two cobalt atoms bound to eight carbon monoxide ligands, although multiple structural isomers are known. Some of the carbonyl ligands are labile.

<span class="mw-page-title-main">Tungsten hexacarbonyl</span> Chemical compound

Tungsten hexacarbonyl (also called tungsten carbonyl) is an organometallic compound with the formula W(CO)6. This complex gave rise to the first example of a dihydrogen complex.

<span class="mw-page-title-main">Metallacycle</span>

In organometallic chemistry, a metallacycle is a derivative of a carbocyclic compound wherein a metal has replaced at least one carbon center; this is to some extent similar to heterocycles. Metallacycles appear frequently as reactive intermediates in catalysis, e.g. olefin metathesis and alkyne trimerization. In organic synthesis, directed ortho metalation is widely used for the functionalization of arene rings via C-H activation. One main effect that metallic atom substitution on a cyclic carbon compound is distorting the geometry due to the large size of typical metals.

Organochromium chemistry is a branch of organometallic chemistry that deals with organic compounds containing a chromium to carbon bond and their reactions. The field is of some relevance to organic synthesis. The relevant oxidation states for organochromium complexes encompass the entire range of possible oxidation states from –4 (d10) in Na4[Cr–IV(CO)4] to +6 (d0) in oxo-alkyl complexes like Cp*CrVI(=O)2Me.

Organoiron chemistry is the chemistry of iron compounds containing a carbon-to-iron chemical bond. Organoiron compounds are relevant in organic synthesis as reagents such as iron pentacarbonyl, diiron nonacarbonyl and disodium tetracarbonylferrate. While iron adopts oxidation states from Fe(−II) through to Fe(VII), Fe(IV) is the highest established oxidation state for organoiron species. Although iron is generally less active in many catalytic applications, it is less expensive and "greener" than other metals. Organoiron compounds feature a wide range of ligands that support the Fe-C bond; as with other organometals, these supporting ligands prominently include phosphines, carbon monoxide, and cyclopentadienyl, but hard ligands such as amines are employed as well.

Organorhenium chemistry describes the compounds with Re−C bonds. Because rhenium is a rare element, relatively few applications exist, but the area has been a rich source of concepts and a few useful catalysts.

<span class="mw-page-title-main">(Mesitylene)molybdenum tricarbonyl</span> Chemical compound

(Mesitylene)molybdenum tricarbonyl is an organomolybdenum compound derived from the aromatic compound mesitylene (1,3,5-trimethylbenzene) and molybdenum carbonyl. It exists as pale yellow crystals, which are soluble in organic solvents but decompose when in solution. It has been examined as a catalyst and reagent.

Transition metal carbyne complexes are organometallic compounds with a triple bond between carbon and the transition metal. This triple bond consists of a σ-bond and two π-bonds. The HOMO of the carbyne ligand interacts with the LUMO of the metal to create the σ-bond. The two π-bonds are formed when the two HOMO orbitals of the metal back-donate to the LUMO of the carbyne. They are also called metal alkylidynes—the carbon is a carbyne ligand. Such compounds are useful in organic synthesis of alkynes and nitriles. They have been the focus on much fundamental research.

A metal carbido complex is a coordination complex that contains a carbon atom as a ligand. They are analogous to metal nitrido complexes. Carbido complexes are a molecular subclass of carbides, which are prevalent in organometallic and inorganic chemistry. Carbido complexes represent models for intermediates in Fischer–Tropsch synthesis, olefin metathesis, and related catalytic industrial processes. Ruthenium-based carbido complexes are by far the most synthesized and characterized to date. Although, complexes containing chromium, gold, iron, nickel, molybdenum, osmium, rhenium, and tungsten cores are also known. Mixed-metal carbides are also known.

Organoniobium chemistry is the chemistry of compounds containing niobium-carbon (Nb-C) bonds. Compared to the other group 5 transition metal organometallics, the chemistry of organoniobium compounds most closely resembles that of organotantalum compounds. Organoniobium compounds of oxidation states +5, +4, +3, +2, +1, 0, -1, and -3 have been prepared, with the +5 oxidation state being the most common.

<span class="mw-page-title-main">Transition metal imido complex</span>

In coordination chemistry and organometallic chemistry, transition metal imido complexes is a coordination compound containing an imido ligand. Imido ligands can be terminal or bridging ligands. The parent imido ligand has the formula NH, but most imido ligands have alkyl or aryl groups in place of H. The imido ligand is generally viewed as a dianion, akin to oxide.

Carbonyl olefin metathesis is a type of metathesis reaction that entails, formally, the redistribution of fragments of an alkene and a carbonyl by the scission and regeneration of carbon-carbon and carbon-oxygen double bonds respectively. It is a powerful method in organic synthesis using simple carbonyls and olefins and converting them into less accessible products with higher structural complexity.

References

  1. Beatrice Roessler; Sven Kleinhenza; Konrad Seppelt (2000). "Pentamethylmolybdenum". Chemical Communications (12): 1039–1040. doi:10.1039/b000987n.
  2. Poli, R. (2008). "High oxidation state organomolybdenum and organotungsten chemistry in protic environments" (PDF). Coord. Chem. Rev. 252 (15–17): 1592–1612. doi:10.1016/j.ccr.2007.11.029.
  3. Green M. L. H., Ng D. K. P. (1995). "Cycloheptatriene and -enyl Complexes of the Early Transition Metals". Chemical Reviews. 95 (2): 439–73. doi:10.1021/cr00034a006.
  4. Ellis, J. E. (2003). "Metal Carbonyl Anions: from [Fe(CO)4]2− to [Hf(CO)6]2− and Beyond". Organometallics . 22 (17): 3322–3338. doi:10.1021/om030105l.
  5. 1 2 Flower, K. R. (2007). "Molybdenum Compounds without CO or Isonitrile Ligands". In Mingos, D. Michael P.; Crabtree, Robert H. (eds.). Comprehensive Organometallic Chemistry III. Vol. 5. pp. 513–595. doi:10.1016/B0-08-045047-4/00072-8. ISBN   9780080450476.
  6. Stephan, G. C.; Naether, C.; Peters, G.; Tuczek, F. (2013). "Molybdenum 17- and 18-Electron Bis- and Tris(Butadiene) Complexes: Electronic Structures, Spectroscopic Properties, and Oxidative Ligand Substitution Reactions". Inorg. Chem. 52 (10): 5931–5942. doi:10.1021/ic400145f. PMID   23627292.
  7. Joseph L. Templeton "Four-Electron Alkyne Ligands in Molybdenum(II) and Tungsten(II) Complexes" Advances in Organometallic Chemistry 1989, Volume 29, Pages 1–100. doi : 10.1016/S0065-3055(08)60352-4
  8. Synthesis of Organometallic Compounds: A Practical Guide Sanshiro Komiya Ed. S. Komiya, M. Hurano 1997
  9. Kuehn, F. E.; Santos, A. M.; Herrmann, W. A. (2005). "Organorhenium(VII) and Organomolybdenum(VI) Oxides: Syntheses and Application in Olefin Epoxidation". Dalton Trans. (15): 2483–2491. doi:10.1039/b504523a. PMID   16025165.
  10. 1 2 R.R. Schrock (1986). "High-oxidation-state molybdenum and tungsten alkylidene complexes". Acc. Chem. Res. 19 (11): 342–348. doi:10.1021/ar00131a003.
  11. McCullough, Laughlin G. (1985). "Multiple metal-carbon bonds. 38. Preparation of trialkoxymolybdenum(VI) alkylidyne complexes, their reactions with acetylenes, and the x-ray structure of Mo[C3(CMe3)2][OCH(CF3)2](C5H5N)2". J. Am. Chem. Soc. 107 (21): 5987. doi:10.1021/ja00307a025.
  12. Tsai, Yi-Chou; Cummins, Christopher C. (2000). "Facile Synthesis of Trialkoxymolybdenum(VI) Alkylidyne Complexes for Alkyne Metathesis". Organometallics. 19 (25): 5260. doi:10.1021/om000644f.
  13. Cummins, Christopher C. (1998). "Reductive cleavage and related reactions leading to molybdenum–element multiple bonds: new pathways offered by three-coordinate molybdenum(III)". Chemical Communications (17): 1777–1786. doi:10.1039/A802402B.
  14. Fürstner, Alois (1999). "Mo[N(t-Bu)(Ar)]3 Complexes As Catalyst Precursors: In Situ Activation and Application to Metathesis Reactions of Alkynes and Diynes". J. Am. Chem. Soc. 121 (40): 9453. doi:10.1021/ja991340r.
  15. Agapie, Theodor (2002). "Methine (CH) Transfer via a Chlorine Atom Abstraction/Benzene-Elimination Strategy: Molybdenum Methylidyne Synthesis and Elaboration to a Phosphaisocyanide Complex". J. Am. Chem. Soc. 124 (11): 2412–2413. doi:10.1021/ja017278r. PMID   11890770.
  16. Zhang, Wei; Moore, Jeffrey (2004). "Highly Active Trialkoxymolybdenum(VI) Alkylidyne Catalysts Synthesized by a Reductive Recycle Strategy". J. Am. Chem. Soc. 126 (1): 329–335. doi:10.1021/ja0379868. PMID   14709099.
  17. Zhang, Wei; Moore, Jeffrey (2004). "Synthesis of Poly(2,5-thienyleneethynylene)s by Alkyne Metathesis". Macromolecules. 37 (11): 3973. Bibcode:2004MaMol..37.3973Z. doi:10.1021/ma049371g.
  18. Zhang, Wei (2011). "Introducing A Podand Motif to Alkyne Metathesis Catalyst Design: A Highly Active Multidentate Molybdenum(VI) Catalyst that Resists Alkyne Polymerization". Angew. Chem. Int. Ed. 50 (15): 3435–3438. doi:10.1002/anie.201007559. PMID   21394862.
  19. Fürstner, Alois (2009). "Molybdenum Nitride Complexes with Ph3SiO Ligands Are Exceedingly Practical and Tolerant Precatalysts for Alkyne Metathesis and Efficient Nitrogen Transfer Agents". J. Am. Chem. Soc. 131 (27): 9468–9470. doi:10.1021/ja903259g. PMID   19534524.
  20. Fürstner, Alois (2010). "Practical New Silyloxy-Based Alkyne Metathesis Catalysts with Optimized Activity and Selectivity Profiles". J. Am. Chem. Soc. 132 (32): 11045–11057. doi:10.1021/ja104800w. PMID   20698671.
  21. Fürstner, Alois (2013). "Alkyne Metathesis on the Rise". Angew. Chem. Int. Ed. 52 (10): 2794–3519. doi:10.1002/anie.201204513. PMID   23355479.
  22. Schrock, R. (1978). "Multiple metal-carbon bonds. 12. Tungsten and molybdenum neopentylidyne and some tungsten neopentylidene complexes". J. Am. Chem. Soc. 100 (21): 6774. doi:10.1021/ja00489a049.
  23. Chisholm, Malcolm H. (2007). "Hexakis(Dimethylamido)Ditungsten and Tungsten(IV) Chloride". Inorganic Syntheses. Vol. 29. pp. 137–140. doi:10.1002/9780470132609.ch33. ISBN   9780470132609.
  24. Schrock, R. (1982). "Metathesis of tungsten-tungsten triple bonds with acetylenes and nitriles to give alkylidyne and nitrido complexes". J. Am. Chem. Soc. 104 (15): 4291. doi:10.1021/ja00379a061.
  25. Beer, Stephan (2009). "Experimental and Theoretical Investigations of Catalytic Alkyne Cross-Metathesis with Imidazolin-2-iminato Tungsten Alkylidyne Complexes". Organometallics. 28 (5): 1534. doi:10.1021/om801119t.
  26. Beer, Stephan (2007). "Efficient Room-Temperature Alkyne Metathesis with Well-Defined Imidazolin-2-iminato Tungsten Alkylidyne Complexes". Angew. Chem. Int. Ed. 46 (46): 8890–8894. doi:10.1002/anie.200703184. PMID   17935104.
  27. Haberlag, Birte (2010). "Preparation of Imidazolin-2-iminato Molybdenum and Tungsten Benzylidyne Complexes: A New Pathway to Highly Active Alkyne Metathesis Catalysts". Chem. Eur. J. 16 (29): 8868–8877. doi:10.1002/chem.201000597. PMID   20572182.
  28. Wu, Xian; Daniliuc, Constantin G; Hrib, Cristian G; Tamm, Matthias (2011). "Phosphoraneiminato tungsten alkylidyne complexes as highly efficient alkyne metathesis catalysts". Journal of Organometallic Chemistry. 696 (25): 4147–4151. doi:10.1016/j.jorganchem.2011.06.047. ISSN   0022-328X. OCLC   4925450605.
  29. Schrock, R. (2007). "Facile Synthesis of a Tungsten Alkylidyne Catalyst for Alkyne Metathesis". Organometallics. 26 (3): 475. doi:10.1021/om0610647.
  30. Wei Zhang; Yunyi Lu; Jeffrey S. Moore (2007). "Preparation of a Trisamidomolybdenum(VI) Propylidyne Complex". Org. Synth. 84: 163. doi:10.15227/orgsyn.084.0163.Wei Zhang; Hyeon Mo Cho; Jeffrey S. Moore (2007). "Preparation of a Carbazole-Based Macrocycle via Precipitation-driven Alkyne Metathesis" (PDF). Org. Synth. 84: 177. doi:10.15227/orgsyn.084.0177. S2CID   93992722. Archived from the original (PDF) on 2020-02-19.
  31. Kauffmann, T. (1997). "Organomolybdenum and organotungsten reagents. 7. Novel reactions of organomolybdenum and organotungsten compounds: additive-reductive carbonyl dimerization, spontaneous transformation of methyl ligands into μ-methylene ligands, and selective carbonylmethylenation". Angew. Chem. Int. Ed. Engl. 36: 1259–1275. doi:10.1002/anie.199712581.